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Abstract. We propose a simple model of the banking system and analyze stochastic stability
of inter-bank lending. The monetary reserves of banks are modeled as a system of interacting
Feller diffusions. The model is simple enough for mathematical analysis, yet captures how lending
preferences of banks affect possible multiple bank failures. In our model we quantify the lending
preference from one bank to another as a function of all the reserves and find an extreme example
that only k out of n banks can survive after the multiple bank failures. This banking system induces
a class of random graph processes in continuous time exhibiting some stability property. Our analysis
reveals quantities which can be used as indicators by regulators to assess the systemic risk.
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1. Introduction. In this paper we analyze a mechanism of financial crises in
a simple model of the banking industry. Building a safe banking system is one of
the central issues in view of financial risk management of the whole economy, and
as a result, the regulation of the banking industry plays a crucial role. However,
it is often difficult to quantify the connection between regulation and safety of the
system. It is partly because risky phenomena are unexpected by definition and then
we lack sufficient understanding of human economic behaviors. Toward a deeper
understanding of safer systems our attempt is to study a mathematical mechanism of
financial crisis through a continuous-time stochastic model.

Commercial banks compete each other carrying out various risky activities based
on financial technologies and strategies. These banking activities bring about mon-
etary flow. One bank reserves less money than other banks. When funding is not
available enough, the bank borrows from other banks in overnight markets for one’s
immediate needs. If required collateral is too high, the bank fails. Contagion effect
is often observed in financial crisis: the default bank affects other banks and subse-
quently induces multiple defaults. In such occasion the deficits of banks spread among
banks along with the monetary flow, as if they were viruses of infectious diseases or
of computer network.

There have been several attempts to quantify the contagious effects in the banking
network from Epidemics, Physics and Engineering. In literature also reported are
cascading effects, snowball effects and herding behaviors besides the contagious effects.
These effects are measured as non-linear functions of bank capitalization, in general,
and are coined as systemic risk.

Among others, Nier et al. [28] investigate with simulations how exposure size,
connectivity and degree of banking network affect the risk of contagion under a model
of random Erdös-Rényi graph with a one-time idiosyncratic shock. They also provide
a nice literature review from Theoretical Economics, Empirical studies, and Network
studies of inter-bank contagion. Adrian & Shin [2] discuss the leverage effect of
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resizing balance sheets in financial crises. Lorenz et al. [25] introduce a general
framework of cascade and contagion process on network under several discrete-time
models of social, epidemic and financial cascades which include the Voter model and
the Susceptible-Infective-Susceptible model. Under those models it is discussed how
the differences on microscopic level translate into significant differences on macro-
scopic level. These models analyze the banking activities under discrete-time models.

As information and financial technologies have been developed, banking practices
become more intense and seamless. It is natural to think of an approximation of
banking activities by continuous-time models instead of discrete-time models. Here
is a naive question: what is systemic risk of the banking system in continuous time?

In order to approach this question, we shall focus on the monetary flow in a
continuous-time Markov model, and study likelihoods of multiple default events and
long-time behavior. In Section 2.1 we propose a simple model of monetary flow, in
terms of Feller diffusion process which originally comes from the study of Population
Dynamics. In Section 2.2 the behavior of total monetary reserve is studied.

Note that there are other mathematical models for multiple defaults in continuous
time, for example, see the Handbook on Systemic Risk [13] for an overview, Fouque
and Sun [14] on systemic risk, Garnier, Papanicolaou and Yan [16] for some
large deviation results under a bistable potential, and Giesecke and Kim [17] for a
detailed empirical study based on the proportional hazard intensity model.

The diffusion model presented here is simple enough for mathematical analysis,
yet captures how the individual growth rate and the lending preferences of banks
affect possible multiple defaults, as it is shown in Propositions 2.2-2.3 with some
examples in Section 2.3. In Section 2.4 we focus on some quantities that control the
probability of defaults in the system. For the financial regulator’s purposes these
quantities may be monitored from instantaneous monetary flows among the banks
and can be seen as health indicators of the financial system. Namely, given a level
of financial crisis (or the number of simultaneous defaults), the financial regulator
can determine from these quantities whether the system is close or not to the risky
level. With this indicator the probability distributions of multiple default times and
the number of default banks are approximated in Sections 2.5-2.6. Since it is often
difficult to obtain explicit probability formulae, we utilize Interacting Particle System
Algorithm to estimate the default probabilities.

Our simple model has some drawbacks, mainly the lack of assets and liabilities
accounting and of incentives for lending and borrowing. These are discussed further
at the end of Section 2.1. In particular, here we have not considered the strategies
of the banks (in a game approach) and we focus on how the system behaves for
various given lending preference structures. Introducing a game between the banks,
each bank trying to optimize its action with some penalty, is out of the scope of the
present paper but certainly one of the topics of our ongoing research (see for instance
Carmona, Fouque and Sun [6] for an attempt in that direction). Also, recently,
Rogers & Veraart [29] examine a network model of banking system and show that
the banks have incentives to bailout other banks minimizing the default cost of the
system. Similarly, Eisert & Eufinger [10] explain the incentives of banks to have
large interbank exposures.

In Sections 2.7-2.8 we shall see that the diffusion model has the stochastic sta-
bility property under some condition on the lending preference (Proposition 2.4 and
Corollary 2.2). Consequently, a stochastically stable random graph structure is de-
rived from the diffusion model. Here the stochastic stability property is different
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from the financial stability. That is, a stochastically stable model does not neces-
sarily imply safety of its finical system. For simplicity default banks are assumed
to remain in the system except in Section 2.9 where we extend the original model
to consider sub-systems in which default banks are not allowed to participate in the
market anymore.

We conclude in Section 3 and the proof of Proposition 2.4 is given in the Appendix
Section 4.

2. Model of banking system.

2.1. Feller diffusion. On a filtered probability space (Ω,F ,F := (Ft)t≥0,P)
let us consider a banking system X := (X(t) := (X1(t), . . . , Xn(t)), 0 ≤ t < ∞)
of n (≥ 2) banks where bank i has a monetary reserve Xi(t) at time t for each
i = 1, . . . , n with the dynamics of Feller’s diffusion: for 0 ≤ t <∞ ,
(2.1)

Xi(t) = Xi(0) +

∫ t

0

[
δi +

n∑
j=1

(Xj(u)−Xi(u)) · pi,j(X(u))
]
d u+ 2

∫ t

0

√
Xi(u)dWi(u) ,

where we normalized the volatility. If one is interested in the effect of size of volatility,
the simple change of time t→ σ2t can restore the volatility parameter.

Assumption (A): Throughout this paper we assume that the process X(·) starts
from x := (X1(0), . . . , Xn(0)) ∈ [0,∞)n , W := ((W1(t), . . . ,Wn(t)), 0 ≤ t < ∞)
is the standard n-dimensional Brownian motion, δi is a nonnegative constant for
i = 1, . . . , n , and that the function pi,j : [0,∞)n → [0, 1] is a bounded α-Hölder
continuous on compact sets in (0,∞)n for some α ∈ (0, 1] , 1 ≤ i, j ≤ n .

Since each function (pi,j(·))1≤i,j≤n is bounded, the drifts of X(·) in (2.1) grow
at most linearly in absolute value and hence it satisfies the linear growth condition.
On the boundary, say Xi(·) = 0 for some 1 ≤ i ≤ n , the drift coefficient of Xi(·)
in (2.1) satisfies δi +

∑n
j=1Xj(u) · pi,j(X(u)) ≥ δi ≥ 0 , since pi,j(·) ≥ 0 in [0,∞)n .

Thus on the boundary ∪nk=1{x ∈ [0,∞) |xk = 0} , the drift coefficient is bounded
below by min1≤i≤n δi ≥ 0 .

As a direct consequence of Theorem 1.2 of Bass & Perkins [4] on degenerate
diffusions, we obtain the existence and uniqueness of the weak solution to (2.1) in the
positive polyhedral domain [0,∞)n .

Proposition 2.1 (Theorem 1.2 of Bass & Perkins [4]). Under the assumption
on (x, (δi), (pi,j(·))1≤i,j≤n) , a weak solution (X,W ), (Ω,F ,F = (Ft)0≤t<∞,Px) to
(2.1) exists and is unique in the sense of probability distribution. This solution satisfies

Px(X(t) ∈ [0,∞) for 0 ≤ t <∞) = 1 ; x ∈ [0,∞) .

Note that this model (2.1) is closely related to the interacting diffusions studied in
Shiga & Shimizu [31] and Example 2 of Cox, Greven & Shiga [8] which deal with
the unique solution in the strong sense under some conditions on (pi,j(·)) . Here we re-
lax the condition on (pi,j(·))1≤i,j≤n and consider the weak solution of (2.1), instead of
the strong solution. Following [4], we may relax the condition on (pi,j(·))1≤i,j≤n even
more, so that the drifts themselves satisfy the Hölder continuity. Furthermore, by the
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Girsanov change of measure, we may deal with more general, possibly discontinuous
drifts. Here we take our assumption (A) for the sake of simplicity.

The system (2.1) appears as one of the simplest continuous-time models for a
banking system. Each bank i reserves money with a drift δi (≥ 0) from its own
banking activity (re-investing and lending) plus a drift from the inter-bank short-time
(over-night) lending: if j has more reserve than i , i.e., Xj(t) > Xi(t) , money flows
from j to i proportional to the difference Xj(t) − Xi(t) with rate pi,j(X(t)) ≥ 0
at time t > 0 . If pi,j(·) = 0 = pj,i(·) , then there is no monetary flow between i
and j . This rate function pi,j(·) ≥ 0 represents lending preference from j to i
for 1 ≤ i, j ≤ n . The random Brownian shock Wi(·) affects each monetary reserve
Xi(·) where the variance of the shock is proportional to its size for 1 ≤ i ≤ n . In
our future study we will consider a wider class of models with general drifts, volatility
structure and some jump components, however, we start here our analysis from the
simple model (2.1).

We interpret the event Xi(t) = 0 as bankruptcy of i at time t ≥ 0 for 1 ≤ i ≤ n .
Up to Section 2.8 we also assume that there is some external support (financial
bailouts) for the default bank from the other banks and the other business sec-
tors, so that the monetary reserve process Xi(·) has the nonnegative drift rate
δi +

∑n
j=1Xj(t) · pi,j(X(t)) ≥ δi ≥ 0 , at the time {t ≥ 0 |Xi(t) = 0} of its de-

fault for i = 1, . . . , n . Another interpretation of this non-negative drift is modeling
of the births of new small banks at the time of defaults of the old banks. In practice,
the default banks may not participate in the financial market anymore. Later in Sec-
tion 2.9 we extend our considerations to the case that each default bank is removed
from the system (2.1) but the total monetary reserve in the system grows at the same
rate over time on average.

It should be emphasized that this simple model has the following shortcomings.

Asset and Liabilities : When banks borrow from each other in the model, they
incur no obligation to repay their debts. The model does not include any notion
of assets or liabilities, and therefore, does not describe the conventional notion of
bankruptcy resulting from not being able to meet payment obligations. Our definition
of bankruptcy is when a bank’s monetary reserve reaches zero, but since banks derive
no benefit from having funds, there is in fact no harm within the model to hitting
a fund balance of zero. Taking debt obligations into account would require to deal
with coupled infinite-dimensional diffusions due to the forward maturity components.
This is outside of the scope of this paper but certainly the topic of future research.

Incentives for lending and borrowing : Banks do not derive any benefit from having
more funds or from lending to other banks and the income rate δi is not influenced by
the fund flows. Introducing a game aspect in the model is also a topic of our ongoing
research (Carmona, Fouque and Sun [6]). As many simplistic models in Applied
Mathematics, our model in this paper exhibits some features of collective behavior of
coupled diffusions which can be interpreted in terms of inter-bank lending and from
which quantities of interest for measuring stability of the system can be identified.
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2.2. Total monetary reserve process. Summing Xi(·) in (2.1) over i =
1, . . . , n , we obtain the dynamics of total monetary reserve X (·) :=

∑n
i=1Xi(·) :

X (t) = X (0) +

∫ t

0

( n∑
i=1

δi +

n∑
i,j=1

(Xj(s)−Xi(s))pi,j(X(s))
)
ds

+ 2

∫ t

0

n∑
i=1

√
Xi(s)dWi(s) .

(2.2)

for 0 ≤ t < ∞ . By P. Lévy’s theorem (e.g., see Theorem 3.4.2 of Karatzas &

Shreve [23]) we can write the stochastic integral part as 2
∫ t

0

√
X(u)d β(u) by possibly

extending the probability space and introducing another Brownian motion β(·) , so
that

∫ ·
0

√
X (s)dβ(s) =

∫ ·
0

∑n
i=1

√
Xi(s)dWi(s) . Thus we obtain

X (t) = X (0) +

∫ t

0

( n∑
i=1

δi +

n∑
i,j=1

(Xj(s)−Xi(s))pi,j(X(s))
)
ds+ 2

∫ t

0

√
X (s)dβ(s)

for 0 ≤ t <∞ .
Note that the drift of X (·) is not a simple function of X (·) in general, however,

if we assume additionally the symmetry pi,j(·) = pj,i(·) of the lending preference for
1 ≤ i, j ≤ n , then it can be verified that

n∑
i=1

n∑
j=1

(xj − xi) · pi,j(x) =
∑
i<j

(xj − xi) · pi,j(x) +
∑
j<i

(xj − xi) · pi,j(x) = 0 ;

for x = (x1, . . . , xn) ∈ (R+)n , and hence the X(·) follows a squared Bessel process
of dimension δ∗ :=

∑n
i=1 δi :

(2.3) X(t) = X(0) + δ∗t+ 2

∫ t

0

√
X(u)d β(u) ; 0 ≤ t <∞ .

The constant δ∗ represents the total growth rate of the banking system. It follows
from the properties of the squared Bessel process of dimension δ that

• If δ∗ ≥ 2 , the total reserve X(·) never reaches zero:

(2.4) Px(X(t) > 0 , for all t ∈ [0,∞)) = 1 ; x ∈ (0,∞)n .

• If δ∗ = 2 , the system survives as in (2.4), and grows forever

(2.5) Px(lim sup
t→∞

X(t) =∞) = 1 ; x ∈ (0,∞)n

but it faces a big financial crisis of shrinking the total reserves to almost
nothing at some point in the future almost surely:

(2.6) Px( inf
0≤s<∞

X(s) = 0) = 1 ; x ∈ [0,∞)n .

• If 0 < δ∗ < 2 , the property (2.4) does not hold; the property (2.5) still
holds; X(·) attains zero almost surely; and the point {0} is instantaneously
reflecting.

• If δ∗ = 0 , the process X (·) in (2.3) attains zero in a finite time and stops
thereafter almost surely.

Thus under the additional assumption of the symmetry pi,j(·) = pj,i(·) , 1 ≤ i, j ≤ n ,
we can simply describe different possible behaviors of the total reserve by the different
choices of the growth rate δ∗ =

∑n
i=1 δi in the model (2.1).
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2.3. Multiple defaults. In the previous section we saw the growth of the total
monetary reserve process. Now we shall study how the lending preference affects
each monetary reserve of i = 1, . . . , n . If the inter-bank lending is frozen to some
extent, or equivalently, the lending preference (pi,j(·))1≤i,j≤n is restricted to some
range close to zero, some banks are broke together at the same time almost surely,
that is, multiple default occurs.

Proposition 2.2. In addition to the model assumption (A) in Section 2.1, let
us assume that for some k ∈ {1, . . . , n} indexes (`1, . . . , `k) ⊂ {1, . . . , n} the lending
preference (pi,j(·)) and the growth rate (δ`1 , . . . , δ`k) satisfy

(2.7) sup
x∈[0,∞)n

|x`i − xj | · p`i,j(x) < 2c0 :=
1

k(n− 1)

(
2−

k∑
i=1

δ`i
)

for 1 ≤ i ≤ k, 1 ≤ j ≤ n . Then, the k banks (`1, . . . , `k) are broke simultaneously
at some time t ∈ (0,∞) almost surely, that is,

(2.8) Px

(
X`1(t) = X`2(t) = · · · = X`k(t) = 0 for some t ∈ (0,∞)

)
= 1 .

Proof. The proof is based on an application of the comparison theorem of Ikeda
& Watanabe [22] with the squared Bessel process. The condition (2.7) implies

δ :=

k∑
i=1

δ`i + sup
x∈[0,∞)n

∣∣∣ k∑
i=1

n∑
j=1

(xj − x`i) · p`i,j(x)
∣∣∣

<

k∑
i=1

δ`i + 2c0k(n− 1) = 2 ,

(2.9)

In a similar way as we have derived (2.3), by extending the probability space and in-

troducing another Brownian motion βk(·) , we see that the sum Xk(·) :=
∑k
i=1X`i(·)

of the monetary reserve of the chosen banks indexed by (`1, . . . , `k) satisfies

dXk(t) =

k∑
i=1

[
δ`i +

n∑
j=1

(Xj(u)−X`i(t)) · p`i,j(X(t))
]
d t+ 2

√
Xk(t)d βk(t) ; t ≥ 0 .

It follows from an application of the comparison theorem in [22] (see also Lemma 2.1

of [20]) that the sum Xk(·) is less than or equal to the squared Bessel process X̃k(·)
of dimension δ(< 2) defined by

(2.10) X̃k(t) := Xk(0) + δt+ 2

∫ t

0

√
X̃k(u)d βk(u) ,

with the same initial value X̃k(0) = Xk(0) . Since X̃k(·) attains the origin infinitely
often almost surely, so does the sum Xk(·) . Thus we obtain (2.8).

Note that even in the case δ∗ =
∑n
i=1 δi ≥ 2 when the total reserve grows as in

(2.5), if the condition (2.7) is satisfied, multiple defaults can occur almost surely. The
condition (2.7) on the preference (pi,j(·))1≤i,j≤n restricts the inter-banking monetary
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Fig. 2.1. Examples of lending preferences pi,j(·) that satisfy (2.7) in xi-xj axis. Examples of
(2.11) (left) and (2.12) (right).

flow in a stringent way, so that every bank can get bankrupt together with other (k−1)
banks at the same time for every k = 1, . . . , n−1 due to the lack of support from the
other banks that have more reserves. Note also that there are many possible choices
of the preference (pi,j(·))1≤i,j≤n that satisfy (2.7). Here are some examples.

• No monetary flow case pi,j(·) ≡ 0 , 1 ≤ i, j ≤ n satisfies (2.7), if
∑k
i=1 δ`i <

2 .

• Given a constant c1(< c0) , where c0 is defined in (2.7), we define
(2.11)

pi,j(x)

c1
:=


2(xi ∧ xj)/(xi + xj)

2 if xi + xj ≥ 1 ,
2(xi ∧ xj) if xi ∧ xj ≥ 1/2 , 1/2 ≤ xi + xj ≤ 1 ,

2(xi + xj)− 1 if xi ∧ xj ≤ 1/2 , 1/2 ≤ xi + xj ≤ 1 ,
0 if xi + xj ≤ 1/2 ,

for 1 ≤ i, j ≤ n , x = (x1, . . . , xn) ∈ [0,∞)n . It can be checked that (2.11)
satisfies the model assumption (A) and condition (2.7). This is the case that
pi,j(·) = 0 on the boundary {x ∈ [0,∞) |xixj = 0} for every 1 ≤ i, j ≤ n .
With n = 100 , k = 10 , δ = 2 , c1 = c0/2 , the resulting function is shown
in Figure 2.1. �

• Similarly, given a nonnegative function h : [0,∞)→ [0, 1] which is α-Hölder
continuous on compact sets in (0,∞) for some α ∈ (0, 1] , we can take

(2.12) pi,j(x) = h(|xi − xj |) ; x = (x1, . . . , xn) ∈ [0,∞)n , 1 ≤ i, j ≤ n .

The condition (2.7) holds if we choose c1 < c0 and h(s) = c1 / s for s ≥ 1
and h(s) = c1s for s ≤ 1 . The resulting function is shown in Figure 2.1. �

Conversely, to avoid the multiple defaults of k banks indexed by {`1, . . . , `k} ,
we obtain some condition on the lending preference (pi,j(·))1≤i,j≤n in the following
proposition.

Proposition 2.3. In addition to the model assumption (A) in Section 2.1, let
us assume that for some k ∈ {1, . . . , n} indexes (`1, . . . , `k) ⊂ {1, . . . , n} the lending
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preference (pi,j(·)) and the growth rate (δ`1 , . . . , δ`k) satisfy

(2.13) inf
x∈[0,∞)n

n∑
j=1

k∑
i=1

(xj − x`i) · p`i,j(x) ≥ 2c0k

for 1 ≤ i ≤ k, 1 ≤ j ≤ n , where c0 is in (2.7). Then the k banks (`1, . . . , `k) are
broke simultaneously at some time t ∈ (0,∞) almost surely, that is,

(2.14) Px

(
X`1(t) = X`2(t) = · · · = X`k(t) = 0 for some t ∈ (0,∞)

)
= 0 .

The meaning of the condition (2.13) is that if the monetary reserve X`i of `i is
small, there are enough monetary flow from the other banks to `i for i = 1, . . . , k .
We may relax the condition (2.13) for (2.14). For example, if the lending preference
(pi,j(·))1≤i,j≤n is strictly positive in the sense that min1≤i<j≤n infx∈(0,∞)n pi,j(x) >
0 , then (2.7) is not satisfied. In particular, it contains the case pi,j(·) = 1 / n . In this
case, as n→∞ , we can consider formally a mean-field limit approximation:

dXi(t) = (δi + m−Xi(t))d t+ 2
√
Xi(t)dWi(t) ,

where m := limn→∞
∑n
i=1Xi(0) / n is the empirical mean of initial distribution; the

bank i will not default, if m + δi > 1 .

2.4. Financial Health Indicators. Suppose now that the financial regulator
of the banking system is interested in monitoring the system, especially a subgroup
{`1, . . . , `k} of k banks. From the viewpoint of the financial regulator Proposition
2.3 suggests that the quantity

(2.15) I(t, `1, . . . , `k) :=

n∑
j=1

k∑
i=1

(Xj(t)−X`i(t))) p`i,j(X(t))

is a health barometer for the subgroup {`1, . . . , `k} of banks at time t ≥ 0 . This is
the sum of net instantaneous monetary flows between the subgroup and the rest of
the system. If this quantity I(·) is bounded below by 2c0k as in (2.13), then the
subgroup {`1, . . . , `k} of banks do not have multiple defaults in the sense of (2.14).

On the other hand, if this quantity I(·) is small, then the subgroup may fall in
a risky situation. In fact, Proposition 2.2 suggests that another quantity

(2.16) J(t, `1, . . . , `k) := sup
1≤i≤k,1≤j≤n

|X`i(t)−Xj(t)| p`i,j(X(t))

is a risk indicator of the subgroup {`1, . . . , `k} at time t ≥ 0 . If the quantity J(·) is
less than 2c0 in (2.7), then the subgroup {`1, . . . , `k} may face multiple defaults as
in (2.8). Therefore, the financial regulator may use these quantities I(·) and J(·) in
order to assess the health condition of the banking system.

It is noteworthy that these indicators are delicate quantities. If the financial
regulator observes only (X1(·), . . . , Xn(·)) but cannot directly observe I(·; `1, . . . , `k)
nor J(·; `1, . . . , `k) (that is the preferences pi,j), then one needs to estimate them by
filtering techniques. If in addition, each bank follows the strategy optimizing its
action, the problem of determining the financial health of the system becomes even
more difficult. These issues are outside the scope of the present paper and are topics
of ongoing research.
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2.5. Multiple Default Time Probability Estimations. The sum Xk(·) =∑k
i=1X`i(·) of arbitrary choice (`1, . . . , `k) of k banks is compared with the squared

Bessel process X̃k(·) of dimension δ defined in (2.9) in the proof of Proposition 2.2.
With the condition (2.7) still enforced, let us consider the multiple default time τk
as well as the first passage time τ̃k of X̃k(·) :

τk := inf{t ≥ 0 : Xk(t) = 0} , τ̃k := inf{t ≥ 0 : X̃k(t) = 0} .

Applying the comparison theorem with the results of [11] and [19] on the squared
Bessel process again, we can estimate the tail probability distribution

Px(τk > t) ≤ Px(τ̃k > t) =

∫ ∞
t

1

sΓ(δ)

( (Xk(0))2

2s

)δ1
exp

(
− (Xk(0))2

2s

)
d s

=: γ
( (Xk(0))2

2t
; δ
)

; t ≥ 0 , x ∈ [0,∞)n ,

(2.17)

where γ(x ; s) :=
∫ x

0
us−1e−ud u is the lower incomplete gamma function for s > 0 ,

x ≥ 0 . Thus the tail probability (2.17) is of the order of t−δ as t→∞ . In this way
δ in (2.9) is interpreted as the indicator of possible maximum lending activities, that
is, the more inter-bank lending activities (large δ ), the more likelihood of survival.
The estimate (2.17) is only an upper bound. To obtain a rough lower bound, let us
define the lower bound

δ :=

k∑
i=1

δ`i + inf
x∈[0,∞)n

k∑
i=1

n∑
j=1

(xj − xi) · p`i,j(x) .

Again by the comparison theorem, if δ > 0 ,

(2.18) Px(τk ≥ t) ≥ γ
( (Xk(0))2

2t
; δ
)

; t ≥ 0 , x ∈ [0,∞)n .

Thus (2.17) and (2.18) are the lower and upper estimates of the default time proba-
bility for some appropriate lending preference (pij(·))1≤i,j≤n .

If there is no lending of money among the banks, that is, pij(·) ≡ 0 , then δ =∑k
i=1 δ`i , gives the exact probability

(2.19) Px(τk ≥ t) = γ
( (Xk(0))2

2t
;

k∑
i=1

δ`i

)
; t ≥ 0 , x ∈ [0,∞)n .

This is a benchmark to compare the different lending preferences. In general, it is
hard to obtain an explicit formula for the first multiple default time distribution for
the arbitrary choice (`1, . . . , `k) of k banks. We shall discuss a numerical procedure
in Section 2.6.

2.6. Number of defaults estimated by Interacting Particle System Al-
gorithm. In practice, it is interesting to see what is the probability that many de-
faults occur in a given time. Let us denote by N0(t) the number of defaults before
time t ≥ 0 , i.e.,

N0(t) :=

n∑
i=1

χ( min
0≤s≤t

Xi(s) = 0) ; 0 ≤ t <∞ ,
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where χ(A) is the indicator function which takes one if A is true and zero otherwise.
If there is no monetary flow pij(·) ≡ 0 , 1 ≤ i, j ≤ n between banks, and hence the

reserve processes (X1(·), . . . , Xn(·)) are independent, we can compute this probability
exactly as we do in (2.19). By considering all possible choice (`1, . . . , `k) ⊂ {1, . . . , n}
of default bank names and (n− k) non-default banks until time t , we obtain

Px(N0(t) = k)

=
∑

1≤`1<···<`k≤n

[ k∏
j=1

(
1− γ

( (X`j (0))2

2t
; δ`j

))]
·
[ ∏
i6∈{`1,...,`k}

γ
( (Xi(0))2

2t
; δi

)]
,

for 0 ≤ t <∞ , where γ(·; ·) is defined in (2.17). Even in this independent, simplest
case, the computation of these probabilities becomes delicate for larger n and k ,
since the number of summands becomes large but each summand is small.

Unfortunately, it seems very hard to obtain an explicit theoretical answer, for
any given lending preference (pij(·))1≤i,j≤n . Instead, here we suggest a Monte Carlo
scheme to compute the small probability, following the interacting particle method
proposed by Carmona, Fouque & Vestal [5]. Let us define a small threshold
b > 0 and the number

Nb(T ) :=

n∑
i=1

χ
(

min
0≤s≤T

Xi(s) ≤ b
)

of banks whose reserves go below the level b before time T > 0 . Let us estimate the
probability mass function of the number of defaults:

(2.20) Px(Nb(T ) = k) = E
[
χ
( n∑
i=1

χ
(

min
0≤s≤T

Xi(s) ≤ b
)

= k
)]

; k = 1, . . . , n .

Interacting Particle System (IPS) Algorithm [5] Dividing the time interval
[0, T ] into L equal subintervals [ (`−1)T /L , ` T /L ] with ` = 1 . . . , L , we simulate

M random chains where each chain is {Y (j)
` = (X̂(j)(`T /L), m̂(j)(`T /L))}1≤`≤L

for j = 1, . . . ,M . Here X̂(j)(·) is the jth simulation of X(·) in the system (2.1) and
m̂(j) is the jth simulation of the vector m(·) := (m1(·), . . . ,mn(·)) of the running
minimum mi(t) = min0≤s≤tXi(s) , for i = 1, . . . , n , j = 1, . . . ,M , 0 ≤ t ≤ T .
After initializing the chain, for each ` = 1, . . . , L , repeat the following selection and
mutation stages alternatively:

• (Selection Stage). Sampling M new particles from {Y (j)
` }1≤j≤M with Gibbs

weights

[ M∑
j=1

n∏
i=1

γ
(j)
i,`

]−1 n∏
i=1

γ
(j)
i,`

where

γ
(j)
i,` :=

[min(m̂
(j)
i ((`− 1)T /L), X̂

(j)
i (`T /L))

m̂
(j)
i ((`− 1)T /L)

]−α
,

for each i = 1, . . . , n , j = 1, . . . ,M with some choice of α > 0 .
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Fig. 2.2. Estimated probability mass function (2.20), b = 0.01 (left), b = 0.0001 (right) by
IPS method. The parameters are specified in Example 2.1. The solid (dashed, dotted, resp.) line
indicates the estimated probability (estimated 5 percentile, 95 percentile of the simulation, resp.)

• (Mutation Stage). Running Euler scheme with time mesh of size ∆t (<<

T /L) to get the new value Y
(j)
`+1 , j = 1, . . . ,M , starting from the new

particles sampled in the above.
The probability estimate P̂x(Nb(T ) = k) of Px(Nb(T ) = k) in (2.20) is given by

P̂x(Nb(T ) = k) =
1

M

M∑
j=1

(
χ (N̂

(j)
b = k)

n∏
i=1

[m̂(j)
i (T )

m̂
(j)
i (0)

]α)
·
[ L−1∏
`=0

( 1

M

M∑
a=1

n∏
i=1

γ
(a)
i,`

)]
,

for k = 1, . . . , n , where N̂
(j)
b (T ) is the corresponding number to Nb(T ) in the jth

simulation for j = 1, . . . ,M . �

Example 2.1. Here is an extreme example: with initial point x = (1, . . . , 1) ,
growth rate δ = 2 and lending preference pi,j(·) specified as in (2.11) with k = n−1 ,
let us set T = 1 , n = 100 , M = 1000 (the number of simulation), L = 10 (the
number of subintervals in [0, 1] ), α = 0.0001 , and run (2.1) with the time mesh
∆t = 0.001 for the Euler scheme in the Mutation Stage to compute the probability
mass functions (2.20) for b = 0.01 and b = 0.0001 . The results are shown in Figure
2.2 with the estimated 5 and 95 percentiles from one hundred repetitions. �

The advantages of this IPS approach are its simplicity and small storage space
for the implementation of the algorithm. We may choose various Gibbs weights with

different choice of (γ
(j)
i,` ) in the Selection Stage, for example, the number of defaults,

instead of the running minimum. We may extend this algorithm for the probability
distribution of the number of times when the k banks run out of their reserves together
before time T :

Px

[ ∑
1≤`1<···<`k≤n

χ
(

min
0≤s≤T

max(X`1(s), . . . , X`k(s)) ≤ b
)

= j
]

; j ≥ 1 ,

by looking at maximum max(X`1(·), . . . , X`k(·)) , instead of Xi(·) in (2.20). There
is another kind of freedom in choosing the tuning parameter α in the above IPS
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algorithm, which is discussed in detail in [5]. For the computation of the rare event
probabilities note that there are other approaches, for example, sequential impor-
tant sampling (e.g., see [9] in a similar financial context) and forward flux sampling
methods (e.g., see [1] and its references in Physics and Chemistry).

2.7. Stochastic stability. The squared Bessel process X(·) of dimension δ∗ ∈
(0, 2] in (2.3) is (null) recurrent in (0,∞) , that is, for every Borel measurable subset
A of (0,∞) , the total reserve X(·) in (2.3) hits A , and hence hits A infinitely often
almost surely by the strong Markov property. On the other hand, if δ∗ =

∑n
i=1 δi ∈

(2,∞) , then X(·) is transient. Thus, the whole growth rate δ∗ characterizes the
behavior of the total reserve X(·) . Here we shall consider the asymptotic behavior
of the system in (2.1).

Suppose that the bank i reserves the highest amount Xi(t) = max1≤j≤nXj(t)
at some time t ≥ 0 in the system (2.1). It follows from the dynamics (2.1) that the
deviation Xi(t)− δit has the non-positive drift

n∑
j=1

(Xj(t)−Xi(t)) · pi,j(X(t)) ≤ 0 , if Xi(t) = max
1≤j<n

Xj(t) .

In other words, every bank cannot be too large relative to the size of other banks.
This intuition can be formulated in the following way.

Let us consider the deviation Yi(·) := Xi(·)− n−1X(·) = Xi(·)− n−1
∑n
j=1Xj(·)

from the average monetary reserve n−1X(·) for i = 1, . . . , n . Since the sum is∑n
i=1 Yi(·) = 0 , the n-dimensional process Y (·) := (Y1(·), . . . , Yn(·)) stays on the

hyperplane Π := {y := (y1, . . . , yn) ∈ Rn |
∑n
i=1 yi = 0} .

Proposition 2.4. In addition to the model assumption (A) in Section 2.1, let us
assume that the individual growth rate is identical δi ≡ δ > 0 , the lending preference
is symmetric pi,j(·) = pj,i(·) for i, j = 1, . . . , n , and that there exist positive constants
c3 and c4 such that the lending preference (pi,j(·))1≤i,j≤n of the banks satisfy

(2.21) min
1≤i,j≤n

inf
x∈[0,∞)n

{
pi,j(x) : |xi − xj | > c3

}
≥ c4 > 0.

Then, the Π-valued process Y (·) is stochastically stable, that is, there exists a unique
invariant probability measure µ(·) such that the Strong Law of Large Numbers

(2.22) lim
T→∞

1

T

∫ T

0

f(Y (t))d t =

∫
Π

f(y)µ(dy) a.s.

holds for every bounded measurable function f : Π→ R .

For example, the condition (2.21) is satisfied in the case of constant lending
preferences. Furthermore, it can be satisfied by the lending preferences of the form
(2.12). Note that we may relax the identical growth-rate condition δi ≡ δ and
the symmetric lending preference condition pi,j(·) = pj,i(·) for i, j = 1, . . . , n in
Proposition 2.4 to another weaker condition, but then we should change the condition
(2.21) to another complicated condition. For our purpose of simple presentation we
demonstrate the proposition under the identical growth-rate condition.

The proof is given in Appendix 4. Since Xi(·) − Xj(·) = Yi(·) − Yj(·) for 1 ≤
i, j ≤ n , as a direct consequence of Proposition 2.4 we obtain the following corollary.
We shall use this result later in Section 2.8.
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Corollary 2.1. Under the conditions in Proposition 2.4, the (n × n) matrix-
valued process (Xi(·)−Xj(·))1≤i,j≤n is stochastically stable.

2.8. Network representation. Let us construct a random graph from (2.1) by
considering each bank as a node (vertex) and the connection between two banks as
a link in the graph. Here we consider the connection between i and j , in terms of
the (absolute) monetary flow |Xj(t)−Xi(t))| · pi,j(X(t)) among 1 ≤ i < j ≤ n . For
each fixed r ≥ 0 , we connect i and j with indicator χi,j;r(t) = 1 , if the monetary
flow is larger than r , otherwise χi,j;r(t) = 0 , i.e.,

(2.23) χi,j;r(t) := χ( |Xj(·)−Xi(·))| · pi,j(X(·)) ≥ r ) ; 1 ≤ i, j ≤ n , 0 ≤ t <∞ ,

where χ(·) is the indicator function. Thus we obtain the matrix-valued process

(2.24) χr := {χi,j;r(t) , 1 ≤ i, j ≤ n, 0 ≤ t <∞}

on the space of undirected graphs for each threshold r ≥ 0 . We may consider the
directed graphs with the directions of monetary flows, if we replace the indicator by
the sign of (Xj(·)−Xi(·)) · pi,j(X(·))− r ; 1 ≤ i, j ≤ n in (2.23).

The theory of Random Graph has been developed with many applications. It
started by the study of Gilbert [18], Erdös and Renyi [12], In Economics and
Finance the random graph has been used for multiple agent problem, for example,
exchange market of many interacting agents (Föllmer [15]) and herd behavior (Cont
& Bouchaud [7]). There are several statistics that describe the monetary flow in the
random graph representation. The total number of links for i , the sum of χi,j;r(·)
in (2.24) over j = 1, . . . , n , is called the degree of i :

(2.25) degreei;r(·) :=

n∑
j=1

χi,j;r(·) ; i = 1, . . . , n .

The distance disti,j(·) between i and j is the number of minimum links from i
to j . The eccentricity of i is max1≤j≤n[disti,j(·)] , i = 1, . . . , n , and the diameter
of the network is max1≤i<j≤n[disti,j(·)] . The average distance

∑n
j=1 disti,j(·) / n of

bank i indicates where the bank i is allocated in the network: a bank with smaller
average distance locates closer to the center of network.

There are other statistics such as influential domain (the number (or percentage
to the total number of nodes) of maximal connected nodes in the network), and
betweenness centrality of i which is defined by

∑
1≤k,`≤n[pk,`,i /

∑n
j=1 pk,`,j ] , where

pk,`,i is the number of paths from k to ` that contain i in-between for i, k, ` =
1, . . . , n . These statistics are studied by Markose [26] in Network simulations, by
Müller [27] for the Swiss interbank system, by Soramäki et.al. [32] for the FRB
interbank system, by Santos & Cont [30] for the Brazilian interbank system.

Figure 2.3 shows graphs of the network of n = 100 banks for different times,
simulated based on (2.1) with constant lending preferences pi,j(·) given by (2.11) for
1 ≤ i < j ≤ n and δi = 2 / n . Each line segments outside represents a size of money
reserved by bank Xi(·) for i = 1, . . . , n and each line segment inside represents the
link χi,j;r(·) from i to j , defined by (2.23). The strength |Xj(·)−Xi(·)| · pi,j(X(·))
of the link is considered in gray-scale: black line shows stronger link than the gray
line. The links with strength weaker than some threshold r are not shown. For the
sake of presentation the threshold depends on the range of the strength for each time
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Fig. 2.3. The graphs of the network for the initial state, after 200 steps and 400 steps, respec-
tively from left to right.

in Figure 2.3. As it is expected, the strong links are observed between relatively big
banks and relatively small banks.

We shall study the dynamics of the random graphs {χr}{r≥0} and the statistics
listed above. Note that each statistic can be written as a function of the monetary
reserve X(t) = (X1(t), . . . , Xn(t)) for 0 ≤ t <∞ . Let us denote such function by ϕ
on [0,∞)n and each statistic by ϕ(X(t)) for 0 ≤ t < ∞ . It follows from Corollary
2.1 that if the function x := (x1, . . . , xn) ∈ [0,∞)n → ϕ(x) depends only on the
differences (xi − xj)1≤i,j≤n , then the process ϕ(X(t)) is stochastically stable.

Corollary 2.2. In addition to the model assumption and the condition (2.21)
of Proposition 2.4, assume that the function x := (x1, . . . , xn) ∈ [0,∞)n → pi,j(x)
depends only on the difference xi−xj for every 1 ≤ i, j ≤ n , then the instantaneous
monetary flow (Fi,j(t))1≤i,j≤n from j to i :

(2.26) Fi,j(t) := (Xi(t)−Xj(t)) · pi,j(X(t)) ; 1 ≤ i, j ≤ n , 0 ≤ t <∞

of the drift coefficient in (2.1) is stochastically stable, that is, there exists a unique
invariant probability measure µ̃(·) on the space of (n×n) matrices with nonnegative
elements, such that the Law of Large Numbers holds

lim
T→∞

1

T

∫ T

0

f((Fi,j(t))1≤i,j≤n)d t =

∫
[0,∞)n

f((yi,j)1≤i,j≤n) µ̃
( n∏
i,j=1

d yi,j

)
a.s.

for every bounded continuous function f : [0,∞)n⊗ [0,∞)n → R and for 1 ≤ i ≤ n .

Example 2.2. Let us consider (pi,j)1≤i,j≤n of (2.12). The lending preference
pij(x) = h(|xi − xj |) only depends on the difference xi − xj for 1 ≤ i, j ≤ n . If
we choose the function h(·) as h(s) = c1(1 + s−1) / 2 for s ≥ 1 and h(s) = c1s
for s ≤ 1 , we can make the resulting lending preference satisfy the condition (2.21)
with c3 = c1 / 2 and c4 = 1 . It follows from Corollary 2.2 that the instantaneous
monetary flow (Fi,j(·))1≤i,j≤n in (2.26) is stochastically stable, and hence so are the
derived statistics (degree, distance, eccentricity, diameter). For example, for some
particular choices of r ∈ {3 × 10−5, 4 × 10−5} , we simulate the degree distribution
with Monte Carlo simulation (the number of simulation is 105 ). The expected degree
is compared with the ranking of banks in their size (from the larger bank to the smaller
bank) in Figure 2.4. �
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Fig. 2.4. Expected degree (2.25) over the ranking of banks for different r = 3 × 10−5 (lower
green curve) r = 4 × 10−5 (upper blue curve) from the Monte Carlo simulation.

2.9. Exit system. As an extension of model (2.1) we consider subsystems where
default banks are removed from the whole system to the cemetery state ∆ . Let us
denote the zero sets by Zi := {x ∈ [0,∞)n : xi = 0} , i = 1, . . . , n , and the initial
index set I0 := {i : 1 ≤ i ≤ n} with size |I0| = n . Let us define the index process
It := {i : Xi(t) 6= 0 nor Xi(t) 6= ∆} as an F-adapted càdlàg process for 0 ≤ t <∞ .

The default banks are removed from the system every time when their monetary
reserves become zero, or in the zero set ∪ni=1Zi , that is, at the first default time

(2.27) σ1 := inf{t > σ0 = 0 : X(t) ∈ ∪ni=1Zi}

we remove all the default banks and keep the survivors index Iσ1 := {i : Xi(σ1) 6= 0} .
The monetary reserves Xi(·) , i 6∈ Iσ1 of the default banks are immediately removed
and stay in ∆ after this removal; for each survivor i ∈ Iσ1

we restart the process
with the following SDE:

Xi(t) = Xi(σ1) +

∫ t

σ1

[
δ̂i(u)+

∑
j∈Iσ1

(Xj(u)−Xi(u)) · pi,j(X(u))
]
d u

+ 2

∫ t

σ1

√
Xi(u)dWi(u) ;

for i ∈ Iσ1
, σ1 ≤ t < σ2 , where X(·) := {Xi(·) : i ∈ Iσ1

} until the next default time
σ2 := inf{t > σ1 : X(t) ∈ ∪i∈Iσ1Zi} . We evaluate the lending preference pi,j(·) ≡ 0
if the bank i or j is broke, i.e., i ∈ I0 \ Iσ1 or j ∈ I0 \ Iσ1 . Here the individual

growth rate δ̂i(·) may depend on the surviving banks in It . For example, we can

choose δ̂i(·) as

(2.28) δ̂i(t) :=
(
n
∑
k∈It

δk
)−1( n∑

j=1

δj
)
· δi ; i ∈ It , t ≥ 0 ,

so that the average growth rate is fixed :
∑
i∈It δ̂i(t) / |It| ≡

∑n
j=1 δj / n .

We continue this exit rule: at the stopping time σm we define the survivors index
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Iσm := {i : Xi(σm) 6= 0} , and redefine the process

Xi(t) = Xi(σm) +

∫ t

σm

[
δ̂i(u)+

∑
j∈Iσm

(Xj(u)−Xi(u)) · pi,j(X(u))
]
d u

+ 2

∫ t

σm

√
Xi(u)dWi(u) ;

(2.29)

for i ∈ Iσm , σm ≤ t < σm+1 , with X(·) := {Xi(·) : i ∈ Iσm} until the next default
time σm+1 := inf{t > σm : X(t) ∈ ∪i∈IσmZi} , for m = 1, 2, . . . , and build a filtered
probability space (Ω,F ,F = {Ft},P) by pasting the probability measure locally at
every stopping times {σ1, σ2, . . .} of defaults.

We shall study this exit system (2.29). Since the sample paths of X(·) are
continuous, the interval σm − σm−1 between the stopping times σm−1 and σm are
positive almost surely for m = 1, . . . . By the construction of the stopping times,
0 < σ1 ≤ inf{t ≥ 0 : |It| ≤ j} almost surely for j = 1, . . . , n . Along with the same
line as Proposition 2.2 we obtain a similar result on multiple default times.

Proposition 2.5. Under the same conditions (2.7) as in Proposition 2.2 with
x ∈ (0,∞)n the probability of multiple default

Px

(
X`1(t) = · · · = X`k(t) = 0 , for some t ∈ (0, σ∗)

)
for the system (2.29) with (2.28) is strictly positive, where σ∗ is the first time that
one of the banks indexed in the set {`1, . . . , `k} is broke, i.e., σ∗ := inf{t > 0 :
{`1, . . . , `k} 6⊂ It} > 0 .

Proof. We apply the comparisons with the Bessel process as in Proposition 2.2.
In fact, it can be shown as in (2.9) that the dynamics of the process

∑n−k
i=1 X`i(·) has

the drift strictly dominated by δ < 2 (see (2.9)). Hence by the comparison argument

the process
∑n−k
i=1 X`i(·) is dominated by the squared Bessel process X̃k(·) in (2.10)

driven by the same Brownian motion with the dimension δ and with the same initial
condition. Since this squared Bessel process X̃k(·) hits the origin during every positive
time interval with positive probability, we conclude the desired result.

The interpretation is that under the condition of (2.7), even if some weaker banks
are removed from the system, there is still a positive probability of multiple defaults.

Example 2.3 (Only one bank survives.). If the lending preference (pi,j(·), 1 ≤
i, j ≤ n) satisfies (2.7) with k = n− 1 and δi ≡ 2 / n for i = 1, . . . , n , that is,

max
1≤i,j≤n

sup
x∈[0,∞)n

|xi − xj | · pi,j(x) <
2

n(n− 1)2
,

then under the model (2.29) with δ∗ = 2 , the multiple defaults occur with positive
probability, and moreover, limt→∞|It| = 1 and inf{t > 0 : |It| = 1} < ∞ a.s., i.e.,
only one bank can survive at the end.

Example 2.4 (All the banks are cooperating together.). If the lending preference
(pi,j(·), 1 ≤ i, j ≤ n) satisfy

min
1≤i≤n

inf
x∈[0,∞)n

n∑
j=1

(xj − xi) · pi,j(x) >
2(n− 1)

n
,

and δi = 2 / n , for i = 1, . . . , n , then under the model (2.29) all the banks can survive
by the comparison argument, i.e., P(|It| = n for all t) = 1 .
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3. Conclusion. We analyze the simple model (2.1) and its exit system (2.29).
Propositions 2.1-2.5 show that the growth rate and the lending preference are im-
portant to understand the systemic risk of inter-bank lending. Especially, the results
spotlight how the lending preference leads illiquid monetary flow and multiple de-
faults. Our study of the Feller diffusion model (2.1) for inter-bank lending and bor-
rowing dynamics has revealed the important quantities (2.15) and (2.16) which can
be used by regulators to assess systemic risk. These indicators are model-independent
but they can be rigorously analyzed under the model proposed in this paper. Some
other quantities of interest such as the distribution of number of defaults are not given
explicitly, but they can be obtained relatively easily under our model by simulations
using Interacting Particle System methods.

This simple model presented in the paper may be extended to more general models
with (i) the drift term that contains explicit interest rates, with (ii) the correlated
random noise in the volatility term, and with (iii) controls by each bank. These
extensions are on-going research topics.

4. Appendix. [Proof of Proposition 2.4]. In the case of the identical growth
rates δi ≡ δ and the symmetric lending preference pi,j(·) = pj,i(·) for i, j = 1, . . . , n
the deviation Yi(·) = Xi(·) − n−1X (·) from the average n−1X (·) = n−1

∑n
i=1Xi(·)

satisfies

d Yi(t) =

n∑
j=1

(Xj −Xi) · pi,j(X(t))d t+ 2
√
Xi(t)dWi(t)−

2

n

n∑
j=1

√
Xj(t)dWj(t)

for 1 ≤ i ≤ n , 0 ≤ t <∞ , and hence by Itô’s formula

d

n∑
i=1

(Yi(t))
2 =2

[ n∑
i=1

Yi(t)

n∑
j=1

(Yj(t)− Yi(t)) · pi,j(X(t)) + 2
(

1− 1

n

) n∑
k=1

Xk(t)
]
d t

+ 2

n∑
i=1

Yi(t)
√
Xi(t)dWi(t) ; 0 ≤ t <∞ .

The process
∑n
i=1(Yi(·))2 is non-negative. Its diffusion coefficient becomes zero only

when X1(·) = X2(·) = · · · = Xn(·) . Since we assume δ > 0 , the amount of time in
which the process X (·) in (2.2)-(2.3) spends at the origin is at most zero Lebesgue
measure almost surely (recall Section 2.2). This implies that the amount of time in
which the diffusion coefficient of

∑n
i=1(Yi(·))2 becomes zero is at most zero Lebesgue

measure. In the following we show first that the squared sum
∑n
i=1(Yi(·))2 is positive

recurrent.

For notational simplicity let us define the maximum Z1(·) := max1≤i≤nXi(·) ,
the minimum Zn(·) := min1≤i≤nXi(·) and the range Ξ(·) := Z1(·) − Zn(·) . In
general, let us write Zk(·) for the kth largest among (X1(·), . . . , Xn(·)) , and let us
also introduce the stochastic number Nk(·) of processes whose sizes are the same as
Zk(·) by Nk(·) := |{i : Xi(·) = Zk(·)} for k = 1, . . . , n .

It follows from Theorem 2.3 (page 1246) of Banner & Ghomrasni [3] that the
rankings Z1(·), . . . , Zn(·) with Z1(·) ≥ · · · ≥ Zn(·) satisfy

dZk(t) =

n∑
i=1

(Nk(t))−11{Zk(t)=Xi(t)}dXi(t) +

n∑
j=k+1

(Nk(t))−1dLt(Zk − Zj)
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−
k−1∑
j=1

(Nk(t))−1dLt(Zj − Zk) ; 0 ≤ t <∞ , k = 1, . . . , n ,

where Lt(U) is the local time accumulated at the origin by semimarttingale U until
time t ≥ 0 . Taking the difference Ξ(·) = Z1(·)− Zn(·) , we obtain the dynamics

(4.1) dΞ(t) = d (Z1(t)− Zn(t)) = dM(t) + G(X(t))d t+ d ( local times ) ,

for 0 ≤ t <∞ , where

dM(·) :=

n∑
i=1

1{Z1(·)=Xi(·)}
√
Xi(·)dWi(·)−

n∑
`=1

1{Zn(·)=X`(·)}
√
X`(·)dW`(·) ,

G(x) :=
∑

1≤i,j≤n

1{z1=xi}(xj − xi)pi,j(x)−
∑

1≤k,`≤n

1{zn=x`}(xk − x`)p`,k(x) ,

and z1 := max1≤i≤n xi , zn := min1≤i≤n xi for x = (x1, . . . , xn) ∈ [0,∞)n . Here the
local times work as minimum amount of push which keeps the range process Ξ(·) in
the positive real line. Note that (xj − xi)pi,j(x) ≤ 0 for 1 ≤ i, j ≤ n on the set
{z1 = xi} , and −(xk − x`)p`,k(x) ≤ 0 for 1 ≤ k, ` ≤ n on the set {zn = x`} . Thus

G(x) ≤ −2(z1 − zn)pi,`(x)1{z1=xi,zn=x`} < 0 ; x ∈ [0,∞)n .

because of the symmetry assumption pi,j(·) = pj,i(·) . Moreover, using the positive
constants c3 , c4 in the assumption (2.21), we estimate G(X(t)) by

(4.2) G(X(t)) ≤ −c4Ξ(t) whenever Ξ(t) = Z1(t)− Zn(t) ≥ c3 .

Now let us define the time-changed process ξt := Ξ(Ct) of Ξ(·) in (4.1) by the
stochastic clock Ct := inf{s : 〈Ξ〉(s) ≥ t} derived from its quadratic variation process

〈Ξ〉(t) = 〈Z1 − Zn〉(t) =
∫ t

0
(4Ξ(s))d s for t ≥ 0 . It follows that

d ξt = d [M(Ct) ] + [ (4ξt)
−1G(X(Ct)) ]d t+ dLt ; 0 ≤ t <∞

where L· consists of the corresponding time-changed local times obtained from (4.1).
The local martingale M(C·) is a Brownian motion (on a possibly extended probabil-
ity space), because of the F. Knight Theorem. The drift part (4ξ·)

−1G(X(C·))
is dominated by −c4/4 < 0 , whenever ξt ≥ c3 , because of the estimate (4.2).
The time-changed local time L· is almost surely carried by the random set {t :
Xi(Ct) = Xj(Ct) for some i, j} of zero Lebesgue measure. Thus by the comparison
Theorem [22] the process ξ· is dominated by a Brownian motion with the negative
drift −c3/4 , whenever ξ· > c4 and Xi(C·) 6= Xj(C·) for all 1 ≤ i, j ≤ n . It
implies that ξ· is positive recurrent and hence so does the range process Ξ(·) =
Z1(·)−Zn(·) = max1≤i≤nXi(·)−min1≤j≤nXj(·) . Furthermore, because of an equal-
ity

∑n
i=1(Yi(·))2 ≤ n(Ξ(·))2 , the process

∑n
i=1(Yi(·))2 is also positive recurrent.

Finally, by extending Theorem 4.1 & 5.1 on page 119-121 of K’hasminskii [24]
(also see Proof of Theorem 1 of [21]) for this degenerate case (but the process Y (·)
stays the region {y ∈ Rn : y1 = y2 = · · · = yn = 0} of degeneracy only in the the
time amount of zero Lebesgue measure) we can conclude that Y (·) is stochastically
stable in the sense of (2.22). �
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