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Abstract

We present a derivative pricing and estimation methodology for a class of stochastic
volatility models that exploits the observed "bursty" or persistent nature of stock

price volatility. Empirical analysis of high-frequency S&P 500 index data con�rms

that volatility reverts slowly to its mean in comparison to the tick-by-tick uctuations

of the index value, but it is fast mean-reverting when looked at over the time scale

of a derivative contract (many months). This motivates an asymptotic analysis of

the partial di�erential equation satis�ed by derivative prices, utilizing the distinction

between these time scales.

The analysis yields pricing and implied volatility formulas, and the latter pro-

vides a simple procedure to "�t the skew" from European index option prices. The

theory identi�es the important group parameters that are needed for the derivative

pricing and hedging problem for European-style securities, namely the average volatil-
ity and the slope and intercept of the implied volatility line, plotted as a function of

the log-moneyness-to-maturity-ratio. The results considerably simplify the estimation

procedure.

The remaining parameters, including the growth rate of the underlying, the cor-

relation between asset price and volatility shocks, the rate of mean-reversion of the

volatility and the market price of volatility risk are not needed for the asymptotic

pricing formulas for European derivatives, and we derive the formula for a knock-out

barrier option as an example. The extension to American and path-dependent contin-

gent claims is the subject of future work.
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1 Introduction

This article summarizes a exible methodology for stochastic volatility modeling which has
the following features.

� It applies to a large class of volatility processes that are driven by an ergodic process
that is tending rapidly (in a sense to be explained below) to its invariant measure.

� It incorporates a nonzero volatility risk premium that models the market's \crash-
o-phobia", and a nonzero correlation between volatility and asset price shocks that
explains the much-observed skew or leverage e�ect.

� An asymptotic analysis that exploits volatility clustering yields a simple pricing (and
hedging) theory for European-style and some path-dependent contingent claims whose
implementation requires solution of a PDE problem that is a minor extension of the
corresponding classical Black-Scholes PDE problem for that security. In particular,
where the Black-Scholes theory produces an explicit formula, so does the new theory.

� The parameters needed for the theory are easily \read from the skew". That is,
calibration from near-the-money European option implied volatilities is simple and
direct. The di�cult-to-estimate volatility risk premium, correlation parameter, and
persistence-time of the volatility are not explicitly needed. Further, the theory does
not need estimation of today's volatility level.

� The theory can be extended to give a good approximation of the stochastic volatility
corrected law of the risk-neutral asset price process that can be used to simulate, for
example to price path-dependent and, in principle, American securities.

We outline the main results of this approach and cite references for the mathematical
details and empirical motivation. We also present the pricing formula for a knock-out barrier
option that can be used directly after calibration from the observed European-option skew.
We conclude with a summary of ongoing and future work.
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1.1 Motivation for Stochastic Volatility

Stochastic volatility models have become popular for derivative pricing and hedging in the
last ten years as the existence of a nonat implied volatility surface (or term-structure) has
been noticed and become more pronounced, especially since the 1987 crash. This phenom-
enon, which is well-documented in, for example, [6, 9], stands in empirical contradiction to
the consistent use of a classical Black-Scholes (constant volatility) approach to pricing options
and similar securities. However, it is clearly desirable to maintain as many of the features
as possible that have contributed to this model's popularity and longevity, and the natural
extension pursued in the literature and in practice has been to modify the speci�cation of
volatility in the stochastic dynamics of the underlying asset price model.

Any extended model must also specify what data it is to be calibrated from. The pure
Black-Scholes procedure of estimating from historical stock data only is not possible in an
incomplete market if one takes the view (as we shall) that the market selects a unique risk
neutral derivative pricing measure, from a family of possible measures, which reects its
degree of "crash-o-phobia". Thus at least some derivative data has to be used to price
other derivatives, and much recent work uses only derivative data to estimate all the model
parameters so that the assumed relationship between the dynamics of derivative prices and
the dynamics of the underlying is not exploited at all.

We also refer the reader to recent surveys of the stochastic volatility literature such as
[4, 5].

1.2 Mean-Reverting Di�usion Model

While the general asymptotic theory [2] can be given for volatility processes driven by
any ergodic stochastic process with a unique invariant measure (eg. Markov chains, jump
processes), it is convenient to present the analysis for a di�usion driving process, as is done
in [1, 3]. The analysis in [10] is independent of speci�c modeling of the volatility process,
but results in bands for option prices that describe potential volatility risk while obviating
the need to estimate the risk premium. However, the market in at- and near-the-money
European options is liquid and its historical data can be used to estimate this premium.
We attempt this with a parsimonious model that is complex enough to reect an important
number of observed volatility features:

1. volatility is positive;

2. volatility is mean-reverting, but persists;

3. volatility shocks are negatively correlated with asset price shocks. That is, when volatil-
ity goes up, stock prices tend to go down and vice-versa. This is often referred to as
leverage, and it at least partially accounts for a skewed distribution for the asset price
that lognormal or zero-correlation stochastic volatility models do not exhibit.

1.3 Model

We present the results for models in which stock prices are conditionally lognormal, and the
volatility process is a positive increasing function of a mean-reverting Ornstein-Uhlenbeck
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(OU) process. That is,

dXt

Xt
= �dt+ f(Yt)dWt; (1)

dYt = �(m� Yt)dt+ �dẐt; (2)

Ẑt := �Wt +
q
1� �2Zt;

where W and Z are independent Brownian motions, and � is the correlation between price
and volatility shocks, with j�j < 1.

The solution to (2) is

Yt = m+ (Y0 �m)e��t + �
Z t

0
e��(t�s)dẐs; (3)

and, given Y0, Yt is Gaussian,

Yt � Y0:e
��t � N

�
m
�
1� e��t

�
; �2

�
1� e�2�t

��
; (4)

where �2 := �2= (2�). Thus Y has a unique invariant distribution, namely N (m; �2), and is
a simple building-block for a large class of stochastic volatility models described by choice of
f(�). We call these models mean-reverting because the volatility is a monotonic function of
a process Y whose drift pulls it towards the mean value m. The volatility is correspondingly
pulled towards f(m) approximately.

1.4 Fast mean reversion

It is often noted in empirical studies of stock prices that volatility is persistent or bursty - for
days at a time it is high and then, for a similar length of time, it is low. However, over the
lifetime of a derivative contract (a few months), there are many such periods, and looked at
on this timescale, volatility is uctuating fast, but not as fast as the rapidly changing stock
price.

In terms of our model, we say that the volatility process is fast mean-reverting relative to
the yearly timescale, but slow mean-reverting by the tick-tick timescale. Since the derivative
pricing and hedging problems we study are posed over the former period, we shall say that
volatility exhibits fast mean-reversion without explicitly mentioning the longer timescale of
reference.

The rate of mean-reversion is governed by the parameter �, in annualized units of years�1.
In [3], we present empirical evidence from S&P 500 data that � is in fact large and that �2

is a stable O(1) constant, so that our large-� option pricing formulas of Section 2 can be
used.

As an illustration, Figure 1 shows sample stock price paths for the model (1-2) in which
� = 1 and � = 50. Since, from (4), 1

�
log 2 is the time for the expected distance to the mean

to halve, � = 1 corresponds to 0:7 of a year (roughly 8 months), and � = 50 corresponds to
about half a week. Alternatively, under the invariant distribution N (m; �2), the covariance
of Ys and Ys+t is �

2e��t and ��1 is the correlation time of the OU process. For � = 1 this
correlation time is a year while for � = 50 it is about a week.
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Figure 1: The top �gure shows a simulated path of f(Yt) = eYt with � = 1, and the bottom

one shows a path with � = 50. In both cases, �2 = 0:25; (Efe2Ytg) 12 = 0:1. Note how
volatility "clusters" in the latter case.

1.5 Derivative Pricing

We are interested in pricing European-style derivative contracts on the underlying stock.
When volatility is supposed constant, the classical Black-Scholes theory applies; when it is
modelled as a stochastic process as here, the derivative price C(t; x; y) is given by

C(t; x; y) = E
Q()
t;x;y fh(XT )g; (5)

where E
Q()
t;x;y denotes the expectation given that Xt = x, Yt = y, and under an Equivalent

Martingale Measure (EMM) Q(). The payo� function of the derivative is h(x). Under such
an EMM the discounted stock price is a martingale. By standard no-arbitrage pricing theory
(see for example [7]), there is more than one possible EMM because the market is incomplete
(the volatility is not a traded asset); the nonuniqueness is denoted by the dependence of Q
on , the market price of volatility risk.

We shall assume that  is constant because it has to be estimated from market data, at-
and near-the-money call option prices in [3]. Most studies take  = 0 for simplicity, but we
take the view that the market selects a pricing measure identi�ed by a particular  which
will be shown to occur in a simple manner in our pricing and implied volatility formulas,
hence considerably simplifying estimation of its contribution to the observed skew. This can
then be used to price more complicated derivatives in a consistent manner.

In [3], we analyze the PDE corresponding to (5) in the presence of fast mean-reversion:

Ct +
1

2
f(y)2x2Cxx + ��xf(y)Cxy +

1

2
�2Cyy+

r(xCx � C) + (�(m� y)� ��(y))Cy = 0; (6)

C(T; x; y) = h(x) (7)
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where

�(y) := �
(�� r)

f (y)
+ 

q
1� �2: (8)

There is also a (left) boundary condition

C(t; L; y) = g(t) (9)

which does not, in general, depend on y. For example, for a European call, L = 0; g = 0. We
also require that the solution not be \too singular" as x!1; for example, linear growth is
permissible. This is su�cient to identify a unique solution (see [11] for details). A barrier
option is discussed in Section 4.

To summarize, the stochastic volatility model studied here is described by the �ve para-
meters (m; �; �; �; ) which are, respectively, the mean m and the standard deviation � of the
invariant distribution of the driving OU process, the rate of mean reversion �, the skewness
�, and the market price of volatility risk1 . The last parameter cannot be estimated from
historical asset price data. As we shall see in the next section, not all of these are needed
for the pricing theory.

2 Main Result

1. When the rate of mean-reversion � is large (volatility persistence), the implied volatil-
ity curve from European call options is well-approximated by a straight line in the
composite variable labelled the log-moneyness-to-maturity-ratio (LMMR)

LMMR :=
log

�
Strike Price
Stock Price

�
Time to Maturity

:

That is, if Ccall is the stochastic volatility call option price satisfying (6-7) with h(x) =
(x�K)+, then I de�ned by

Ccall = CBS(I);

where CBS is the Black-Scholes formula, is given by

I = a
log(K=x)

(T � t)
+ b+O(��1):

The parameters a and b are easily estimated as the slope and intercept of the line�t.

2. The price Ch of any other derivative satisfying a problem of type (6,7,9), for example
binary options, barrier options, is given by

Ch = C0 + C1 +O(��1);
1A detailed study of possible ways to de�ne this concept, along with other results, is given in [8].
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where C0(�) is the solution to the corresponding Black-Scholes problem with constant
volatility �, and C1(t; x) solves

LBS(�)C1 = V3x
3@

3C0

@x3
+ V2x

2@
2C0

@x2
;

with

LBS(�) :=
@

@t
+

1

2
�2x2

@2

@x2
+ r

 
x
@

@x
� �
!
; (10)

V3 := �a�3; (11)

V2 := �
�
(� � b)� a(r +

3

2
�2)

�
; (12)

and � is the long-run historical asset price volatility. The terminal condition is C1(T; x) =
0 and the boundary condition is zero also: C1(t; L) = 0.

The table below then distinguishes the model parameters from the parameters that are
actually needed for the theory. The latter can be written as groupings of the former by the
formulas given in [3], but for practical purposes, there is no need to do so. We pursue this
in [3] for empirical completeness.

Model Parameters Parameters that are needed

Growth rate of stock �
Mean historical volatility of stock �

Long-run mean volatility m

Rate of mean-reversion of volatility �
Slope of implied volatility line�t a

Volatility of volatility �

Correlation between shocks �
Intercept of implied volatility line�t b

Volatility risk premium 

The three parameters on the right-side of the table are easily estimated and found to be
quite stable from S&P 500 data in [3].

2.1 Empirical validation of fast mean-reversion

We have undertaken in [3] an extensive empirical study of high-frequency S&P 500 index
data to establish that volatility reverts slowly to its mean compared to the tick-by-tick scale
uctuations, but it reverts fast when looked at over the longer time scale of months. The
key conclusion of this study is that while the rate of mean-reversion (in units years�1) is
large, it is an extremly di�cult parameter to estimate precisely, being the reciprocal of the
correlation time of a hidden Markov process. However, the asymptotic derivatives theory
does not need the value of �, only that it be large.

A brief description of our validation procedure is as follows.
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� We identify and use segments where the volatility process can be considered stationary.
These turn out to be between one and a half to six months in length for the 1994 and
1995 datasets we have looked at, and across these segments, nonstationary e�ects would
have to be taken into consideration. In fact studies of daily closing data, that is low
frequency prices, often identify this timescale as characteristic of volatility persistence.
However the intraday data highlights a shorter timescale of local volatility uctuations.

� We extract the rate of mean-reversion from the Lorenz part of the spectrum of the
logarithm of the squared de-meaned returns process. Such a spectral analysis is suited
to the high-frequency data that we have, and provides a convenient graphical tool for
picking o� an order estimate for �. We �nd that the correlation time of the process
is on the order of one to two days. Thus mean-reversion is fast over the timescale of
months.

� We validate both the OU mean-reverting model and the estimation of the fast rate of
mean-reversion by bootstrap, that is, comparison with spectra of simulated data. The
method separates the intrinsic variability over segments of the model parameters from
their statistical variability. Note that we do not expect parameters of the volatility
process to be constant across the segments of stationarity.

3 Results of �tting the skew

To test the feasibility of the theory-predicted LMMR line�t for actual implied volatility data,
we estimate in [3] the slope and intercept coe�cients â and b̂ from �tting Black-Scholes
implied volatilities from observed S&P 500 European call option prices:

Iobs(t; x;K; T ) = â

 
log(K=x)

T � t

!
+ b̂: (13)

We observe from the results that the slope coe�cients â are small. This strongly supports
the fast mean-reverting hypothesis and validates use of the asymptotic formula as the full
skew formula in [3] shows that a is a term of order 1=

p
�. We also �nd that the estimates â

and b̂ within the segments of stationarity are relatively stable.
The following table separates the needed parameters, whose estimates are fairly sta-

ble, from the ones presented only for completeness, whose estimates have a high degree of
uncertainty. The �gures are for the 1994 S&P 500 .

Segment �̂ â b̂ �̂2 �̂ �̂ �̂ ̂
(length)

1 (6 months) 0.1015 -0.1009 0.1410 0.9153 -0.1428 �155 �-0.11 �-4.97
2 (11

2
months) 0.0994 -0.1270 0.1286 0.7835 0.4170 �155 �-0.20 �2.36

4 (3 months) 0.1030 -0.0888 0.1457 1.0794 -0.0695 �155 �-0.065 �-4.07
Notice that the market price of volatility risk estmate ̂ inherits the variability of the

growth rate estimate �̂, but that, just as the Black-Scholes theory did not depend on �, the
fast mean-reverting stochastic volatility theory only depends upon a stable grouping of the
 and other parameters.
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4 Example: Pricing a Barrier Option

We briey sketch, for illustrative purposes, the extension of the pricing theory to more
exotic securities by outlining the calculation for a knock-out barrier call option which gives
the holder the right to buy the underlying asset on expiration date T for strike price K
unless the asset price has hit the barrier H at any time before T , in which case the contract
expires worthless. In what follows, we shall assume H < K.

In the stochastic volatility environment, the price B(t; x; y) of the barrier option satis�es
(6,7,9) with h(x) = (x�K)+, and boundary condition B(t; H) = 0. Our fast mean-reverting
approximation is

B = B(0)(t; x) +B(1)(t; x) +O(��1);
where B(0) is the Black-Scholes barrier price with constant volatility parameter �. The
stochastic volatility correction B(1) satis�es the PDE problem

LBSB(1) = V3x
3B(0)

xxx + V2x
2B(0)

xx ; in x > H; t < T (14)

with zero terminal and boundary conditions. The operator LBS is de�ned in (10), and
the coe�cients V and W are estimated from the historical volatility � and the slope and
intercept of the skew �t through the expressions (11) and (12).

Following the exposition in [11], B(0)(t; x) is obtained by the method of images and given
by

B(0)(t; x) = CBS(t; x)�
�
x

H

�1�k

CBS(t; H2=x);

where CBS(t; x) is the Black-Scholes formula for a vanilla call option, with the volatility
parameter �, and k := 2r=�2. The right-hand side of (14) is then given by

F (t; x) := V3x
3CBS

xxx(t; x) + V2x
2CBS

xx (t; x)�
�
x

H

�1�k
 
V2
H4

x2
CBS
xx (t; H

2=x) (15)

�V3H
6

x3
CBS
xxx(t; H

2=x) + q(t; H2=x)

!
;

with

q(t; x) := �CBS(t; x) + �xCBS
x (t; x) + �x2CBS

xx (t; x);

� := k(k � 1)(V2 � V3(k + 1));

� := 2kV2 � 3k(k + 1)V3;

� := �3(k + 1)V3:

Motivated by the translation and reection invariance of the spatial part of the Black-
Scholes operator LBS in logarithmic co-ordinates moving at the drift rate r, we de�ne the
mirror operator M by

Mg(t; x) =
�
x

H

�1�k

g(t; H2=x):

Then the method of images says that the solution to LBSB(1) = F (t; x) in x > H is given
by solving

LBSv(t; x) = F (t; x)�MF (t; x);
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in x > 0 and restricting the solution to x > H.
From (15), we then only have to solve

LBSv(t; x) = 2V2(x
2CBS

xx (t; x)�M(x2CBS
xx (t; x))) + q(t; x)�Mq(t; x);

on the full domain x > 0; t < T . Since the right-hand side is a function minus its mirror,
it can be shown that we can ignore the mirror terms, solve and then subtract the mirror of
the solution. Thus we need to solve

LBSu(t; x) = 2V2x
2CBS

xx (t; x) + q(t; x);

with zero terminal and boundary conditions.
A convenient expression for the contribution to the solution from the �rst forcing term is

obtained by explicit computation from the Black-Scholes formula and the Green's function
for LBS. This computation appears in [1] or [3] since it is part of the solution for the regular
call option. The second part of the solution can be written in terms of derivatives of the
Black-Scholes formula with respect to r and �, by noticing that

LBS((T � t)CBS(t; x)) = �CBS(t; x);

LBSCBS
r (t; x) = CBS(t; x)� xCBS

x (t; x);

LBSCBS
� (t; x) = ��x2CBS

xx (t; x):

Using these, we �nd

u = �2V2xe
�d2

1
=2

�
p
2�

p
T � t� (� + �)(T � t)CBS � �CBS

r � �

�
CBS
� ;

where d1 is in standard Black-Scholes notation

d1 =
log(x=K) + (r + 1

2
�2)(T � t)

�
p
T � t

:

Finally, v(t; x) = u(t; x)�Mu(t; x) and B(1)(t; x) is the restriction of v to x > H:

B(1)(t; x) = u(t; x)�
�
x

H

�1�k

u(t; H2=x):

The separate components of the formula are easily computed in closed form and the skew-
calibrated parameters a and b inserted through V2 and V3. There is of course no dependence
on the unseen value of today's volatility f(y).

5 Future directions

1. The estimation tools outlined here can now be used to validate a fast mean-reverting
model for other high-frequency datasets. We are presently preparing an empirical
study of S&P 500 index data from other years, as well as foreign exchange rate data.

10



2. The asymptotic approximation of the derivative prices can be improved to give a
probability law that approximates the full risk-neutral pricing law. The full theory
[2] will depend on more global features of the stochastic volatility model than just the
parameters a and b, but it will be applicable to short-maturity and far-from-the-money
contracts which are outside the region of validity of the present theory.

3. We are working on an asymptotic simpli�cation of the American option pricing problem
under stochastic volatility, which currently must be solved numerically.

4. The problem of computing optimal hedging strategies under constraints when volatility
is random is unsolved. For example, to optimize the probability of a successful hedge
with just the underlying given an initial cash input would require solving a degenerate
Hamilton-Jacobi-Bellman equation. We are looking at simplifying this problem with
separation of scales asymptotics.
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