
Perturbed Gaussian Copula∗

Jean-Pierre Fouque† Xianwen Zhou‡

August 8, 2006

Abstract

Gaussian copula is by far the most popular copula used in the financial industry in default
dependency modeling. However, it has a major drawback — it does not exhibit tail dependence,
a very important property for copula. The essence of tail dependence is the interdependence
when extreme events occur, say, defaults of corporate bonds. In this paper we show that
some tail dependence can be restored by introducing stochastic volatility on a Gaussian copula.
Using perturbation methods we then derive an approximate copula — called perturbed Gaussian
copula in this paper.

A copula is a joint distribution function of uniform random variables. Sklar’s Theorem states
that for any multivariate distribution, the univariate marginal distributions and the dependence
structure can be separated. The dependence structure is completely determined by the copula. It
then implies that one can “borrow” the dependence structure, namely the copula, of one set of
dependent random variables and exchange the marginal distributions for a totally different set of
marginal distributions.

An important property of copula is its invariance under monotonic transformation. More pre-
cisely, if gi is strictly increasing for each i, then (g1(X1), g2(X2), . . . , gn(Xn)) have the same copula
as (X1,X2, . . . ,Xn).

From the above discussion, it is not hard to see that copula comes in default dependency
modeling very naturally. For a much detailed coverage on copula, including the precise format of
Sklar’s Theorem, as well as modeling default dependency by way of copula, the readers are referred
to Schonbucher (2003) [5].

Let (Z1, . . . , Zn) be a normal random vector with standard normal marginals and correlation
matrix R, and Φ(·) be the standard normal cumulative distribution function. Then the joint
distribution function of (Φ(Z1), . . . ,Φ(Zn)) is called the Gaussian copula with correlation matrix
R.
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Gaussian copula is by far the most popular copula used in the financial industry in default
dependency modeling. This is basically because of two reasons. Firstly it is easy to simulate. Sec-
ondly it requires the “right” number of parameters — equal to the number of correlation coefficients
among the underlying names. However, Gaussian copula does not exhibit any tail dependence, a
very important property for copula. The essence of tail dependence is the interdependence when
extreme events occur, say, defaults of corporate bonds. In fact, this is considered as a major
drawback of Gaussian copula.

On the other hand, by introducing stochastic volatility into the classic Black-Scholes model,
Fouque, Papanicolaou and Sircar (2000) [1], by way of singular perturbation method, gave a satis-
factory answer to the “smile curve” problem of implied volatilities in the financial market, leading
to a pricing formula which is in the form of a robust simple correction to the classic Black-Scholes
constant volatility formula. Furthermore, an application of this perturbation method to defaultable
bond pricing has been studied by Fouque, Sircar and Solna (2005) [3]. By fitting real market data,
they concluded that the method works fairly well. An extension to multi-name first passage models
is proposed by Fouque, Wignall and Zhou (2006) [4].

In this paper we will show the effect of stochastic volatility on a Gaussian copula. Specifically,
in Section 1, we first set up the stochastic volatility model and state out the objective — the
transition density functions. Then by singular perturbation, we obtain approximate transition
density functions. In order to make them true probability density functions, we introduce the
transformation 1 + tanh(·). In Section 2, we study this new class of approximate copula density
functions, first analytically and then numerically. Section 3 concludes this paper.

1 Asymptotics

1.1 Model Setup

We start with a process (X
(1)
t ,X

(2)
t , Yt) defined on the complete probability space (Ω,F ,P) and

which follows the dynamics:

dX
(1)
t = f1(Yt)dW

(1)
t ,

dX
(2)
t = f2(Yt)dW

(2)
t ,

dYt =
1

ǫ
(m− Yt)dt+

ν
√

2√
ǫ

dW
(Y )
t ,

where W
(1)
t ,W

(2)
t and W

(Y )
t are standard Brownian motions correlated as follows

d〈W (1),W (2)〉t = ρdt, d〈W (1),W (Y )〉t = ρ1Y dt, d〈W (2),W (Y )〉t = ρ2Y dt,

with −1 ≤ ρ, ρ1Y , ρ2Y ≤ 1 and making the correlation matrix





1 ρ ρ1Y

ρ 1 ρ2Y

ρ1Y ρ2Y 1




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symmetric positive definite, ǫ and ν are positive constant numbers with ǫ ≪ 1 being small. The
fi’s are real functions for i = 1, 2, and are assumed here to be bounded above and below away from
0. It is worth noting that fi’s are not explicit functions of t. They depend on t only through Yt.

Observe that Yt is a mean-reverting process and 1/ǫ is the rate of mean-reversion so that Yt is
fast mean-reverting. Furthermore, Yt admits the unique invariant normal distribution N (m, ν2).

For a fixed time T > 0, our objective is to find, for t < T , the joint distribution

P

{

X
(1)
T ≤ ξ1,X

(2)
T ≤ ξ2

∣

∣

∣
Xt = x, Yt = y

}

and the two marginal distributions

P

{

X
(1)
T ≤ ξ1

∣

∣

∣
Xt = x, Yt = y

}

, P

{

X
(2)
T ≤ ξ2

∣

∣

∣
Xt = x, Yt = y

}

,

where Xt ≡ (X
(1)
t ,X

(2)
t ), x ≡ (x1, x2), and ξ1, ξ2 are two arbitrary numbers. Equivalently, we need

to find the following three transition densities:

uǫ ≡ P

{

X
(1)
T ∈ dξ1,X

(2)
T ∈ dξ2

∣

∣

∣
Xt = x, Yt = y

}

,

vǫ
1 ≡ P

{

X
(1)
T ∈ dξ1

∣

∣

∣
Xt = x, Yt = y

}

,

vǫ
2 ≡ P

{

X
(2)
T ∈ dξ2

∣

∣

∣
Xt = x, Yt = y

}

,

where we show the dependence on the small parameter ǫ.

1.2 PDE Representation

Let us consider uǫ first. In terms of partial differential equation (PDE), uǫ satisfies the following
Kolmogorov backward equation

Lǫuǫ(t, x1, x2, y) = 0,

uǫ(T, x1, x2, y) = δ(ξ1;x1)δ(ξ2;x2),

where δ(ξi;xi) is the Dirac delta function of ξi with spike at ξi = xi for i = 1, 2, and operator Lǫ

has the following decomposition:

Lǫ =
1

ǫ
L0 +

1√
ǫ
L1 + L2,

with the notations:

L0 = (m− y)
∂

∂y
+ ν2 ∂

2

∂y2
, (1)

L1 = ν
√

2 ρ1Y f1(y)
∂2

∂x1∂y
+ ν

√
2 ρ2Y f2(y)

∂2

∂x2∂y
, (2)

L2 =
∂

∂t
+

1

2
f2
1 (y)

∂2

∂x2
1

+
1

2
f2
2 (y)

∂2

∂x2
2

+ ρf1(y)f2(y)
∂2

∂x1∂x2
. (3)
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As in Fouque, Papanicolaou and Sircar (2000) [1], we expand the solution uǫ in powers of
√
ǫ :

uǫ = u0 +
√
ǫ u1 + ǫu2 + ǫ3/2u3 + · · · .

In the following, we will determine the first few terms appearing on the right hand side of the above
expansion. Specifically, we will retain

ū ≡ u0 +
√
ǫ u1, (4)

as an approximation to uǫ (later we will propose another approximation in order to restore posi-
tiveness.)

1.3 Leading Order Term u0

Following Fouque, Papanicolaou and Sircar (2000) [1], the leading order term u0, which is indepen-
dent of variable y, is characterized by:

〈L2〉u0(t, x1, x2) = 0, (5)

u0(T, x1, x2) = δ(ξ1;x1)δ(ξ2;x2),

where 〈·〉 denotes the average with respect to the invariant distribution N (m, ν2) of Yt, i.e.,

〈g〉 ≡
∫ ∞

−∞

g(y)
1

ν
√

2π
exp

{

−(y −m)2

2ν2

}

dy

for a general function g of y.

We define the effective volatilities σ̄1 and σ̄2, and the effective correlation ρ̄ by:

σ̄1 ≡
√

〈f2
1 〉, σ̄2 ≡

√

〈f2
2 〉, ρ̄ ≡ ρ〈f1f2〉

σ̄1σ̄2
. (6)

Using the definition (3) and the notations (6), equation (5) becomes

∂u0

∂t
+

1

2
σ̄2

1

∂2u0

∂x2
1

+
1

2
σ̄2

2

∂2u0

∂x2
2

+ ρ̄σ̄1σ̄2
∂2u0

∂x1∂x2
= 0,

u0(T, x1, x2) = δ(ξ1;x1)δ(ξ2;x2).

It can be verified that u0 is the transition density of two correlated scaled Brownian motions with
instantaneous correlation ρ̄ and scale factors σ̄1 and σ̄2, respectively. That is,

u0(t, x1, x2) =
1

2πσ̄1σ̄2(T − t)
√

1 − ρ̄2
(7)

exp

{

− 1

2(1 − ρ̄2)

[

(ξ1 − x1)
2

σ̄2
1(T − t)

− 2ρ̄
(ξ1 − x1)(ξ2 − x2)

σ̄1σ̄2(T − t)
+

(ξ2 − x2)
2

σ̄2
2(T − t)

]}

.
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1.4 Correction Term
√

ǫ u1

Again, similar to Fouque, Papanicolaou and Sircar (2000) [1], the correction term u1, which is also
independent of variable y, is characterizd by:

〈L2〉u1(t, x1, x2) = Au0, (8)

u1(T, x1, x2) = 0,

where the operator A is defined by

A = 〈L1L−1
0 (L2 − 〈L2〉)〉,

and the inverse L−1
0 is taken on the centered quantity L2 − 〈L2〉.

From the definition (3) of L2, it is straightforward to obtain that

L2 − 〈L2〉

=
1

2
(f2

1 (y) − 〈f2
1 〉)

∂2

∂x2
1

+
1

2
(f2

2 (y) − 〈f2
2 〉)

∂2

∂x2
2

+ ρ(f1(y)f2(y) − 〈f1f2〉)
∂2

∂x1∂x2
.

Let us denote by φ1(y), φ2(y) and φ12(y) solutions of the following Poisson equations respectively

L0φ1(y) = f2
1 (y) − 〈f2

1 〉,
L0φ2(y) = f2

2 (y) − 〈f2
2 〉,

L0φ12(y) = f1(y)f2(y) − 〈f1f2〉.

Their existence (with at most polynomial growth at infinity) is guarantied by the centering property
of the right hand sides and the Fredholm alternative for the infinitesimal generator L0. They are
defined up to additive constants in y which will play no role after applying the operator L1 which
takes derivatives with respect to y. It then follows that

L−1
0 (L2 − 〈L2〉) =

1

2
φ1(y)

∂2

∂x2
1

+
1

2
φ2(y)

∂2

∂x2
2

+ ρφ12(y)
∂2

∂x1∂x2
.

Now by the definition (2) of L1, we have

L1L−1
0 (L2 − 〈L2〉) = ν

√
2 ρ1Y f1(y)

[

1

2
φ′1(y)

∂3

∂x3
1

+
1

2
φ′2(y)

∂3

∂x1∂x
2
2

+ ρφ′12(y)
∂3

∂x2
1∂x2

]

+ν
√

2 ρ2Y f2(y)

[

1

2
φ′1(y)

∂3

∂x2
1∂x2

+
1

2
φ′2(y)

∂3

∂x3
2

+ ρφ′12(y)
∂3

∂x1∂x2
2

]

.

Therefore the operator
√
ǫA can be written

√
ǫA = R1

∂3

∂x3
1

+R2
∂3

∂x3
2

+R12
∂3

∂x1∂x
2
2

+R21
∂3

∂x2
1∂x2

where the constant parameters R1, R2, R12 and R21 are defined as follows:

R1 ≡ νρ1Y
√
ǫ√

2
〈f1φ

′
1〉,
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R2 ≡ νρ2Y
√
ǫ√

2
〈f2φ

′
2〉,

R12 ≡ νρ1Y
√
ǫ√

2
〈f1φ

′
2〉 + ν

√
2ǫ ρρ2Y 〈f2φ

′
12〉,

R21 ≡ νρ2Y
√
ǫ√

2
〈f2φ

′
1〉 + ν

√
2ǫ ρρ1Y 〈f1φ

′
12〉.

Note that they are all small of order
√
ǫ.

It can be checked directly that u1 is given explicitly by

u1 = −(T − t)Au0,

and therefore

√
ǫ u1 = −(T − t)

[

R1
∂3

∂x3
1

+R2
∂3

∂x3
2

+R12
∂3

∂x1∂x
2
2

+R21
∂3

∂x2
1∂x2

]

u0. (9)

Explicit formulas for the third order partial derivatives of u0 are given in Appendix A.

1.5 Regularity Conditions for Density Functions

Since

1 =

∫ ∞

−∞

∫ ∞

−∞

u0(t, x1, x2; ξ1, ξ2)dξ1dξ2,

by Lebesgue dominated convergence theorem, we then have

0 =
∂k1+k21

∂xk1

1 ∂x
k2

2

=

∫ ∞

−∞

∫ ∞

−∞

∂k1+k2

∂xk1

1 ∂x
k2

2

u0(t, x1, x2; ξ1, ξ2)dξ1dξ2,

for integers k1, k2 ≥ 0. It follows that

∫ ∞

−∞

∫ ∞

−∞

√
ǫ u1(t, x1, x2; ξ1, ξ2)dξ1dξ2 = 0,

and hence
∫ ∞

−∞

∫ ∞

−∞

ū(t, x1, x2; ξ1, ξ2)dξ1dξ2 = 1,

where ū = u0 +
√
ǫ u1 is the approximation introduced in (4).

In order to guarantee that our approximated transition density function is always non-negative,
which is the other regularity condition for a density function, we seek a multiplicative perturbation

of the form

ũ ≡ û0(1 + tanh(
√
ǫ û1)),
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where û0 and û1 are defined such that

u0 +
√
ǫ u1 = û0(1 +

√
ǫ û1)

for any ǫ > 0. It can be easily seen that this is achieved with the choice:

û0 = u0, û1 = u1/u0.

Now instead of using ū as our approximation for uǫ, we use

ũ = u0[1 + tanh(
√
ǫ u1/u0)] (10)

= u0

{

1 + tanh

(

−(T − t)
1

u0

[

R1
∂3u0

∂x3
1

+R2
∂3u0

∂x3
2

+R12
∂3u0

∂x1∂x
2
2

+R21
∂3u0

∂x2
1∂x2

])}

.

Before proving that ũ given in (10) is indeed a probability density function, we clarify a definition
first.

Definition 1 Let g be a function of n variables (x1, x2, . . . , xn) ∈ R
n. The function g is called an

n-dimensional even function if

g(−x1,−x2, . . . ,−xn) = g(x1, x2, . . . , xn)

for all (x1, x2, . . . , xn) ∈ R
n, and an n-dimensional odd function if

g(−x1,−x2, . . . ,−xn) = −g(x1, x2, . . . , xn)

for all (x1, x2, . . . , xn) ∈ R
n.

With this definition, we can state the following proposition.

Proposition 1 Let g(x) be a probability density function on R
n for n ≥ 1, and ϕ(x) be an odd

function. If g is an even function, then the function f defined by

f(x) = (1 + tanh(ϕ(x))) g(x)

is also a probability density function on R
n.

Proof We need to prove that f is globally non-negative and its integral over R
n is equal to

one. Observe that tanh(·) is strictly between −1 and 1, and this together with the non-negativity
of g justifies that f is always non-negative. On the other hand, tanh(·) is a (1-dimensional) odd
function, and hence tanh(ϕ(x)) is an (n-dimensional) odd function. Now by change of variables
y = −x, we have

I ≡
∫

Rn

tanh(ϕ(x))g(x)dx =

∫

Rn

tanh(ϕ(−y))g(−y)dy

= −
∫

Rn

tanh(ϕ(y))g(y)dy = −I,
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which implies that I = 0. Therefore
∫

Rn

f(x)dx =

∫

Rn

g(x)dx + I = 1 + 0 = 1.

The proof is complete. �

Now observe that u0 is a probability density function with respect to the variables (ξ1, ξ2), and
is even on (ξ1 − x1, ξ2 − x2). In addition,

√
ǫ u1/u0 is an odd function on (ξ1 − x1, ξ2 − x2). By

Proposition 1 we know that ũ given in (10) is indeed a probability density function.

As for the approximation accuracy |ũ− uǫ|, we first note that

tanh(x) ≈ x− x3

3
,

when x is close to 0. Now for fixed (t, x1, x2), when ǫ is small, we have

ũ = u0[1 + tanh(
√
ǫ u1/u0)]

≈ u0

[

1 +

√
ǫ u1

u0
− 1

3

(√
ǫ u1

u0

)3
]

= u0 +
√
ǫ u1 − ǫ3/2

(

u3
1

3u2
0

)

= ū− ǫ3/2

(

u3
1

3u2
0

)

.

Therefore |ũ− ū| is small of order ǫ3/2, while |ū− uǫ| is small of order ǫ (see Fouque et al. (2003)
[2]). Thus |ũ − uǫ| is small of the same order of ǫ as |ū − uǫ|, i.e., the approximation accuracy
remains unchanged when replacing ū by ũ.

1.6 Marginal Transition Densities

For the marginal transition density function

vǫ
1 ≡ P

{

X
(1)
T ∈ dξ1

∣

∣

∣
Xt = x, Yt = y

}

,

the above argument goes analogously, and we obtain

vǫ
1 ≈ v̄1 ≡ p1(t, x1;T, ξ1|σ̄1) − (T − t)R1

∂3

∂x3
1

p1(t, x1;T, ξ1|σ̄1),

where p1(t, x1;T, ξ1|σ̄1) is the transition density of the scaled Brownian motion with scale factor
σ̄1, that is,

p1(t, x1;T, ξ1|σ̄1) =
1

√

2π(T − t) σ̄1

exp

{

− (ξ1 − x1)
2

2σ̄2
1(T − t)

}

.

A straightforward calculation shows that

∂3p1

∂x3
1

=

[

− 3(ξ1 − x1)√
2π σ̄5

1(T − t)5/2
+

(ξ1 − x1)
3

√
2π σ̄7

1(T − t)7/2

]

exp

{

− (ξ1 − x1)
2

2σ̄2
1(T − t)

}

.
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Note again that
∫ ∞

−∞

v̄1(t, x1;T, ξ1)dξ1 = 1.

To guarantee the non-negativity of the approximated density function, we, again, use instead

ṽ1 ≡ p1

[

1 + tanh

(

−(T − t)R1
1

p1

∂3p1

∂x3
1

)]

as our approximation to vǫ
1.

By symmetry we have

vǫ
2 ≡ P

{

X
(2)
T ∈ dξ2

∣

∣

∣
Xt = x, Yt = y

}

≈ v̄2 ≡ p2(t, x2;T, ξ2|σ̄2) − (T − t)R2
∂3

∂x3
2

p2(t, x2;T, ξ2|σ̄2)

≈ ṽ2 ≡ p2

[

1 + tanh

(

−(T − t)R2
1

p2

∂3p2

∂x3
2

)]

,

where

p2(t, x2;T, ξ2|σ̄2) =
1

√

2π(T − t) σ̄2

exp

{

− (ξ2 − x2)
2

2σ̄2
2(T − t)

}

,

∂3p2

∂x3
2

=

[

− 3(ξ2 − x2)√
2π σ̄5

2(T − t)5/2
+

(ξ2 − x2)
3

√
2π σ̄7

2(T − t)7/2

]

exp

{

− (ξ2 − x2)
2

2σ̄2
2(T − t)

}

,

and ṽ2 is our approximation to vǫ
2.

By exactly the same argument used for ũ, one can show that ṽ1 and ṽ2 are indeed probability
density functions of ξ1 and ξ2, respectively. Furthermore, the approximation accuracies remain
unchanged when switching from v̄1 to ṽ1, and from v̄2 to ṽ2.

2 Density of the Perturbed Copula

2.1 Approximated Copula Density

Now suppose that conditional on {Xt = x, Yt = y}, (X
(1)
T ,X

(2)
T ) admits the copula Ψ(·, ·), then, by

Sklar’s Theorem, its density function ψ(·, ·) can be represented as

ψ(z1, z2) =
uǫ(t, x1, x2, y;T, ξ1, ξ2)

vǫ
1(t, x1, y;T, ξ1) vǫ

2(t, x2, y;T, ξ2)
,

where

z1 = P

{

X
(1)
T ≤ ξ1

∣

∣

∣
Xt = x, Yt = y

}

,

z2 = P

{

X
(2)
T ≤ ξ2

∣

∣

∣
Xt = x, Yt = y

}

.
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Observe that if the volatility terms (f1(·), f2(·)) for (X
(1)
t ,X

(2)
t ) were constant numbers, say, the

process {Yt}t≤T was constant or the fi’s were both identically constant, then Ψ would be a Gaussian
copula.

Using our approximations to uǫ, vǫ
1 and vǫ

2, we have

ψ(ζ1, ζ2) ≈ ψ̃(ζ1, ζ2) ≡
ũ(t, x1, x2;T, ξ1, ξ2)

ṽ1(t, x1;T, ξ1) ṽ2(t, x2;T, ξ2)
, (11)

where

ζ1 =

∫ ξ1

−∞

ṽ1(t, x1;T, ξ1)dξ1

=

∫ ξ1

−∞

p1(t, x1;T, ξ1)

[

1 + tanh

(

−(T − t)R1
1

p1(t, x1;T, ξ1)

∂3p1(t, x1;T, ξ1)

∂x3
1

)]

dξ1,

ζ2 =

∫ ξ2

−∞

ṽ2(t, x2;T, ξ2)dξ2

=

∫ ξ2

−∞

p2(t, x2;T, ξ2)

[

1 + tanh

(

−(T − t)R2
1

p2(t, x2;T, ξ2)

∂3p2(t, x2;T, ξ2)

∂x3
2

)]

dξ2.

The function ũ is given by (10), and the marginals (p1, p2) and their derivatives ∂3p1

∂x3

1

, ∂3p2

∂x3

2

are given

explicitly in the previous section 1.6.

Before justifying that ψ̃ is a probability density function defined on the unit square [0, 1]2, we
need the following proposition.

Proposition 2 Suppose function Θ(x1, x2, . . . , xn) is an n-dimensional probability density function

on R
n for n ≥ 2, and h1(x1), h2(x2), . . . , hn(xn) are 1-dimensional strictly positive probability

density functions. Then the function c defined on the unit hyper-square [0, 1]n by

c(z1, z2, . . . , zn) =
Θ(x1, x2, . . . , xn)

∏n
i=1 hi(xi)

with zi ∈ [0, 1] given by

zi =

∫ xi

−∞

hi(yi)dyi

is a probability density function on [0, 1]n. Furthermore, c is a copula density function if and only

if h1(x1), h2(x2), . . . , hn(xn) are the marginal density functions of Θ(x1, x2, . . . , xn), meaning that

hi(xi) =

∫

Rn−1

Θ(x1, x2, . . . , xn)dx1dx2 · · · dxi−1dxi+1 · · · dxn

for every i = 1, 2, . . . , n.
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Proof Let Hi be the cumulative distribution function of hi. Then Hi is strictly increasing,
implying the existence of its inverse function, and

zi = Hi(xi), or equivalently, xi = H−1
i (zi)

for each i. Since Θ is non-negative, and hi’s are strictly positive, the function c is non-negative.
On the other hand,

∫

[0,1]n
c(z1, z2, . . . , zn)dz1dz2 · · · dzn

=

∫

Rn

c (H1(x1),H2(x2), . . . ,Hn(xn))

n
∏

i=1

hi(xi) dx1dx2 · · · dxn

=

∫

Rn

Θ(x1, x2, . . . , xn) dx1dx2 · · · dxn = 1.

Therefore c(z1, z2, . . . , zn) is a probability density function on [0, 1]n.

Now if the additional condition is satisfied, then we have
∫

[0,1]n−1

c(z1, z2, . . . , zn)dz2 · · · dzn

=

∫

Rn−1

c (z1,H2(x2), . . . ,Hn(xn))

n
∏

i=2

hi(xi) dx2 · · · dxn

=
1

h1(x1)

∫

Rn−1

Θ(x1, x2, . . . , xn) dx2 · · · dxn = 1.

This is to say that the marginal density function for the variable z1 is one, and hence the marginal
distribution for the variable z1 is uniform. Similarly, we can show that the marginal distributions
for the variables z2, . . . , zn are also uniform. By definition of copula, we know that function c is
a copula density function. The converse can be obtained by reversing the above argument. The
proof is complete. �

Now from definition (11) of ψ̃, by combining the fact that ũ, ṽ1 and ṽ2 are all probability
density functions, one can see that ψ̃ is a density function on [0, 1]2 by applying Proposition 2.
However, ψ̃ is not a copula density function in general, because the additional condition required
in Proposition 2 is not satisfied in general in our case, and hence Ψ̃, the “copula” corresponding to
density function ψ̃, is not an exact copula in general.

Asymptotically, when ǫ goes to 0, for fixed (t, x1, x2), the density ψ̃ converges to

φ(z1, z2) ≡
u0(t, x1, x2;T, ξ1, ξ2)

p1(t, x1;T, ξ1) p2(t, x2;T, ξ2)

with

zi =

∫ ξi

−∞

pi(t, xi;T, ξi)dξi = N

(

ξi − xi

σ̄i

√
T − t

)

for i = 1, 2, where N(·) denotes the univariate standard normal cumulative distribution function.
One should observe that φ(·, ·) is the two-dimensional Gaussian copula density function with cor-
relation parameter ρ̄, and that it depends only on the parameter ρ̄, independent of any other
variables/parameters, including x1, x2, t, T, σ̄1, σ̄2, etc.
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As a consequence, Ψ̃ converges to the Gaussian copula Φ with correlation parameter ρ̄. Since
the method used in this paper is a perturbation method, we call Ψ̃ a perturbed Gaussian copula.

2.2 Numerical Results

In this subsection, we illustrate the effectiveness of our approximation method by showing some
numerical results.
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Figure 1: Perturbed Gaussian densities

In Figure 1, we plot p1(t, x1;T, ξ1), v̄1(t, x1;T, ξ1) and ṽ1(t, x1;T, ξ1) as functions of ξ1. Note
that p1(t, x1;T, ξ1) is a standard Gaussian density without any perturbation. The upper graph
demonstrates the difference between p1(t, x1;T, ξ1) (standard Gaussian) and ṽ1(t, x1;T, ξ1) (per-
turbed Gaussian), and the lower one between v̄1(t, x1;T, ξ1) (simply perturbed Gaussian) and
ṽ1(t, x1;T, ξ1) (perturbed Gaussian).

It can be seen from Figure 1 that

• v̄1(t, x1;T, ξ1) (simply perturbed Gaussian) takes on negative values at some places;

• ṽ1(t, x1;T, ξ1) (perturbed Gaussian), however, does not take on negative values, which is
guaranteed by its formation;

• v̄1(t, x1;T, ξ1) and ṽ1(t, x1;T, ξ1) are almost globally identical, which justifies the modification
of the form 1 + tanh(·);
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• ṽ1(t, x1;T, ξ1) is considerably different from p1(t, x1;T, ξ1) (standard Gaussian); specifically,
it shifts to the right from p1(t, x1;T, ξ1);

• Despite the difference between ṽ1(t, x1;T, ξ1) and p1(t, x1;T, ξ1), the areas under them do
seem to be of the same size, which is justified by the fact that both are probability density
functions and hence the overall integrals should both be one.
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Figure 2: Gaussian copula and perturbed Gaussian copula densities

In Figure 2, we plot ψ̃(·, ·) in the lower graph and φ(·, ·) in the upper graph, the Gaussian
copula density that ψ̃ converges to when ǫ goes to 0. It can be seen from Figure 2 that the
standard Gaussian copula density (upper graph) and the perturbed Gaussian copula density (lower
graph) both present singularities at (0, 0) and (1, 1) but the perturbed one has more tail dependence
at (0, 0). Our numerous numerical experiments show that this picture is extremely sensitive to the
choice of parameters and gives a lot of flexibility to the shape of the perturbed Gaussian copula
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density (the Matlab code is available on demand).

Tail dependence is a very important property for a copula, especially when this copula is to be
used in modeling default correlation. The essence of tail dependence is the interdependence when
extreme events occur, say, defaults of corporate bonds. The lack of tail dependence has been for
years a major criticism on standard Gaussian copula.

Throughout the computation, we used the following parameters:

R1 = 0.02, R2 = 0.02, R12 = 0.03,

R21 = 0.03, ρ̄ = 0.5, T − t = 1,

σ̄1 = 0.5, σ̄2 = 0.5, x1 = 0, x2 = 0.

3 Conclusion

In summary, based on a stochastic volatility model, we derived an approximate copula function by
way of singular perturbation that was introduced by Fouque, Papanicolaou and Sircar (2000) [1].
During the approximation, however, in order to make the candidate probability density functions
globally non-negative, instead of directly using the obtained perturbation result as in [1], we intro-
duced a multiplicative modification, namely the 1+tanh(·) form. It turns out that this modification
is both necessary (to restore positiveness) and sufficient to guarantee the resulting functions to be
density functions. Finally the resulting approximate copula — the so-called perturbed Gaussian

copula in this paper — has a very desirable property compared to standard Gaussian copula: tail
dependence at point (0, 0). Some numerical results were provided and they strongly supported the
methods described above, both the singular perturbation and the modification.
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A Explicit Formulas

As obtained in Section 1.3:

u0(t, x1, x2) =
1

2πσ̄1σ̄2(T − t)
√

1 − ρ̄2

exp

{

− 1

2(1 − ρ̄2)

[

(ξ1 − x1)
2

σ̄2
1(T − t)

− 2ρ̄
(ξ1 − x1)(ξ2 − x2)

σ̄1σ̄2(T − t)
+

(ξ2 − x2)
2

σ̄2
2(T − t)

]}

.

By a straightforward calculation and symmetry, we obtain

∂3u0

∂x3
1

= exp

{

− 1

2(1 − ρ̄2)

[

(ξ1 − x1)
2

σ̄2
1(T − t)

− 2ρ̄
(ξ1 − x1)(ξ2 − x2)

σ̄1σ̄2(T − t)
+

(ξ2 − x2)
2

σ̄2
2(T − t)

]}

×
{[

−2(ξ1 − x1)

σ̄2
1

+
2ρ̄(ξ2 − x2)

σ̄1σ̄2

]

3

4πσ̄3
1σ̄2(T − t)3(1 − ρ̄2)5/2

−
[

−2(ξ1 − x1)

σ̄2
1

+
2ρ̄(ξ2 − x2)

σ̄1σ̄2

]3 1

16πσ̄1σ̄2(T − t)4(1 − ρ̄2)7/2

}

,

∂3u0

∂x2
1∂x2

= exp

{

− 1

2(1 − ρ̄2)

[

(ξ1 − x1)
2

σ̄2
1(T − t)

− 2ρ̄
(ξ1 − x1)(ξ2 − x2)

σ̄1σ̄2(T − t)
+

(ξ2 − x2)
2

σ̄2
2(T − t)

]}

×
{[

2ρ̄(ξ1 − x1)

σ̄1σ̄2
− 2(ξ2 − x2)

σ̄2
2

]

1

4πσ̄3
1σ̄2(T − t)3(1 − ρ̄2)5/2

−
[

−2(ξ1 − x1)

σ̄2
1

+
2ρ̄(ξ2 − x2)

σ̄1σ̄2

]

ρ̄

2πσ̄2
1 σ̄

2
2(T − t)3(1 − ρ̄2)5/2

−
[

−2(ξ1 − x1)

σ̄2
1

+
2ρ̄(ξ2 − x2)

σ̄1σ̄2

]2 [

2ρ̄(ξ1 − x1)

σ̄1σ̄2
− 2(ξ2 − x2)

σ̄2
2

]

1

16πσ̄1σ̄2(T − t)4(1 − ρ̄2)7/2

}

.

∂3u0

∂x3
2

= exp

{

− 1

2(1 − ρ̄2)

[

(ξ2 − x2)
2

σ̄2
2(T − t)

− 2ρ̄
(ξ2 − x2)(ξ1 − x1)

σ̄2σ̄1(T − t)
+

(ξ1 − x1)
2

σ̄2
1(T − t)

]}

×
{[

−2(ξ2 − x2)

σ̄2
2

+
2ρ̄(ξ1 − x1)

σ̄2σ̄1

]

3

4πσ̄3
2σ̄1(T − t)3(1 − ρ̄2)5/2

−
[

−2(ξ2 − x2)

σ̄2
2

+
2ρ̄(ξ1 − x1)

σ̄2σ̄1

]3 1

16πσ̄2σ̄1(T − t)4(1 − ρ̄2)7/2

}

,

∂3u0

∂x1∂x2
2

= exp

{

− 1

2(1 − ρ̄2)

[

(ξ2 − x2)
2

σ̄2
2(T − t)

− 2ρ̄
(ξ2 − x2)(ξ1 − x1)

σ̄2σ̄1(T − t)
+

(ξ1 − x1)
2

σ̄2
1(T − t)

]}

×
{[

2ρ̄(ξ2 − x2)

σ̄2σ̄1
− 2(ξ1 − x1)

σ̄2
1

]

1

4πσ̄3
2σ̄1(T − t)3(1 − ρ̄2)5/2

−
[

−2(ξ2 − x2)

σ̄2
2

+
2ρ̄(ξ1 − x1)

σ̄2σ̄1

]

ρ̄

2πσ̄2
2 σ̄

2
1(T − t)3(1 − ρ̄2)5/2

−
[

−2(ξ2 − x2)

σ̄2
2

+
2ρ̄(ξ1 − x1)

σ̄2σ̄1

]2 [

2ρ̄(ξ2 − x2)

σ̄2σ̄1
− 2(ξ1 − x1)

σ̄2
1

]

1

16πσ̄2σ̄1(T − t)4(1 − ρ̄2)7/2

}

.
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