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Abstract. Refocusing for time reversed waves propagating in disordered media has recently
been observed experimentally and studied mathematically. This surprising effect has a great poten-
tial of applications in domains such as medical imaging, underwater acoustics, wireless communi-
cations among others. Time refocusing for one-dimensional acoustic waves is now mathematically
well understood. In this paper the important case of one-dimensional dispersive waves is addressed.
Time reversal is studied in reflection and in transmission. In both cases we derive the self-averaging
properties of time-reversed refocused pulses. An asymptotic analysis allows us to derive a precise
description of the combined effects of randomness and dispersion. In particular we study an im-
portant regime in transmission where the coherent front wave is destroyed while time reversing the
incoherent transmitted wave still enables refocusing.
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1. Introduction. Time reversal for ultrasounds has been extensively studied by
M. Fink and his collaborators at the “Laboratoire Ondes et Acoustique” in Paris. For
a description of these experiments we refer for instance to the papers [11, 12]. A time
reversal mirror is roughly speaking a device which is capable of receiving an acoustic
signal in time, keeping it in memory, and sending it back into the medium in the
reversed direction of time. Time reversal refocusing properties are well understood
mathematically for one-dimensional acoustic waves propagating in random media [9]
and for three-dimensional waves in layered media [16] or in the paraxial regime [3, 6,
23, 5, 4].

In this paper we consider a case of dispersive waves, namely the Boussinesq model
derived in [20]. We first revisit time reversal for reflected signals generated by a pulse
sent in a random half space. The main property of time reversal is the refocusing of
the pulse with a shape that depends only on the statistical properties of the medium,
and not on the particular realization. This has been mathematically studied in the
high-frequency regime for acoustic waves in [9]. We extend this result to the case of
dispersive waves. In Theorem 6.1 we derive the deterministic shape of the refocused
pulse which depends on the statistical properties of the medium and the strength
of the dispersion. This result is obtained in the regime of weak fluctuations of the
medium, a correlation length of the order of magnitude of the pulse carrier wavelength,
and long distances of propagation. The underlying asymptotic analysis is based on
the techniques of separation of scales presented for instance in [2] . In particular we
generalize the system of transport equations that characterize the multiple scattering
of the wave.

Time reversal refocusing can also be obtained from transmitted waves generated
by a pulse propagating through a slab of random medium. For dispersive waves, in
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contrast with acoustic waves, there is an interesting regime where the coherent front
wave is destroyed. We show in this paper that by time reversing the incoherent part of
the transmitted wave it is still possible to refocus at the source. We provide a precise
analysis of the interplay between randomness and dispersion. In particular Theorem
7.1 gives the precise description of the refocused pulse.

One potential application discussed in this paper is the characterization of the
initial sea surface displacement due to tsunamigenic earthquakes by waveform inver-
sion for water waves [24]. In [24] an adjoint method is proposed. In the synthetic
numerical experiments presented a shallow water system, in two space dimensions,
is used for the forward propagation while a linear adjoint method is adopted for the
backward identification of the tsunami source. The authors claim that, in principle,
the adjoint method can be applied to nonlinear hydrodynamic models. Their method
is also applied to real tide gauge series, for the small Gorringe Tsunami of 1969, in-
dicating improvements over previous methods. Here we consider a one-dimensional
dispersive system, which is valid for longer propagation distances than the hyperbolic
shallow water system. Recently these authors have produced the first analysis for the
time reversal of a nonlinear, one-dimensional hyperbolic shallow water system [13].
In particular we have shown how randomness dramatically improves time reversal
experiments. In [13] we have shown that in the presence of randomness one can per-
form time reversal beyond the shock propagation distance. Randomness acts as an
apparent viscosity and regularizes the shock. Extension to linear hyperbolic systems
in higher dimensions has been accomplished for example in [16]. Hence time reversal
for more realistic models in higher dimensions is a promising technique.

Another important fact, regarding applications, is that we have accomplished
a mathematical theory for both the time reversal of dispersive waves (the present
paper) and also for weakly nonlinear hyperbolic waves [13]. These two papers are an
important step in obtaining a mathematical theory for the time reversal of weakly
dispersive, weakly nonlinear waves, namely solitary waves. This might have a great
impact on other models supporting solitons. As a consequence of these two papers,
numerical experiments were performed for the time reversal of solitary waves [14].

The paper is organized as follows. In Section 2 we introduce the Boussinesq equa-
tion including randomness and dispersion and we describe the different scales arising
in the problem. In Section 3 we show how the wave can be decomposed into left- and
right-propagating modes in the dispersive non-random case. This decomposition is
crucial in the following sections where the analysis of the random case is performed.
In Section 4 we establish the system satisfied by the right- and left-going waves in the
random case. We also give the integral representation of the transmitted and reflected
waves in terms of the mode transmission and reflection coefficients. In Section 5 we
introduce the Time Reversal procedures in Reflection (TRR) and in Transmission
(TRT) and derive the corresponding integral representations for the time reversed
waves. The two following sections are devoted to the asymptotic analysis of the
refocused pulses and comparisons with numerical simulations.

2. The terrain following Boussinesq model. We consider the Boussinesq
equation that describes the evolution of surface waves in shallow channels [20]:

M(z)
∂η

∂t
+

∂u

∂z
= 0(2.1)

∂u

∂t
+

∂η

∂z
− β

∂3u

∂z2∂t
= 0(2.2)
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where η is the wave elevation and u is the depth-averaged velocity, z and t are the
space and time coordinates, respectively. The spatial variations of the coefficient M
are imposed by the bottom profile

M(z) = 1 + εm(z)

where 1 stands for the constant mean depth, the dimensionless small parameter ε
characterizes the size of the relative fluctuations of the bottom modeled by the zero-
mean stationary random process m(z). The process m is assumed to be bounded by
a deterministic constant, differentiable, and to have strong mixing properties, such as
rapidly decaying function [22]. We may think for instance that m(z) = f(ν(z)) where
f is a smooth bounded function and ν is a stationary Gaussian process with Gaussian
autocorrelation function and we assume that E[f(ν(0))] = 0. Note that in that case
the realizations of the process ν are of class C∞ almost surely. This hypothesis is
consistent with the terrain-following coordinate system adopted in deriving Eqs. (2.1-
2.2) [20].

We consider the problem on the finite slab−L ≤ z ≤ 0 where boundary conditions
will be imposed at −L and 0 corresponding to a pulse entering the slab from the right
at z = 0. The quantities of interest, the transmitted and reflected waves, will be
observed in time at the extremities z = −L and z = 0, respectively.

The coefficient β measures the dispersion strength. In this paper we consider the
case where the dispersion parameter β is either of order 1 or small. We consider a
pulse whose support is comparable to the correlation length of the random medium,
that is of order 1. In order to see the effect of the small random fluctuations, we
consider a long distance of propagation. As we shall see the interesting regime arises
when the propagation distance is of order 1/ε2.

3. The propagating modes of the homogeneous Boussinesq equation.
Consider the homogeneous Boussinesq equation (with m ≡ 0):

∂η

∂t
+

∂u

∂z
= 0(3.1)

∂u

∂t
+

∂η

∂z
− β

∂3u

∂z2∂t
= 0(3.2)

with a smooth initial condition

u(t = 0, z) = u0(z), η(t = 0, z) = η0(z).

Taking the space Fourier transform

ǔ(t, k) =
1

2π

∫

u(t, z) exp(ikz)dz, η̌(t, k) =
1

2π

∫

η(t, z) exp(ikz)dz,

the Boussinesq equation (3.1-3.2) reduces to a set of ordinary differential equations:

∂η̌

∂t
= ikǔ(3.3)

(

1 + βk2
) ∂ǔ

∂t
= ikη̌.(3.4)

Introducing the pulsation corresponding to the wavenumber k through the dispersion

relation

ω(k) =
k

√

1 + βk2
(3.5)
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we get closed form expressions for the solutions:

ǔ(t, k) =
1

2

(

ǔ0(k) +
ω

k
η̌0(k)

)

exp(iωt) +
1

2

(

ǔ0(k)− ω

k
η̌0(k)

)

exp(−iωt)

η̌(t, k) =
1

2

(

k

ω
ǔ0(k) + η̌0(k)

)

exp(iωt)− 1

2

(

k

ω
ǔ0(k)− η̌0(k)

)

exp(−iωt).

From these expressions we can conclude that any solution can be decomposed as
the superposition of left-propagating modes (u(l), η(l)) and right-propagating modes
(u(r), η(r)):

u(t, z) = u(r)(t, z) + u(l)(t, z)

η(t, z) = η(r)(t, z) + η(l)(t, z)

where

u(r)(t, z) =

∫

1

2

(

ǔ0(k) +
ω

k
η̌0(k)

)

exp (iω(k)t− ikz) dk

η(r)(t, z) =

∫

k

2ω

(

ǔ0(k) +
ω

k
η̌0(k)

)

exp (iω(k)t− ikz) dk

u(l)(t, z) =

∫

1

2

(

ǔ0(k)− ω

k
η̌0(k)

)

exp (−iω(k)t− ikz) dk

η(l)(t, z) = −
∫

k

2ω

(

ǔ0(k)− ω

k
η̌0(k)

)

exp (−iω(k)t− ikz) dk.

This decomposition will be used in the non-homogeneous case in the next section. In
[18] a hyperbolic mode decomposition was used as an approximation for the right and
left propagating modes. Here the mode decomposition is exact for dispersive waves.

4. Propagator formulation. In this section we first express the scattering
problem as a two point boundary value problem in the frequency domain, and then
rewrite it as an initial value problem in terms of the propagator. This is the standard
approach for acoustic equations [2] that we generalize to the dispersive case using the
decomposition introduced in the previous section.

4.1. Mode propagation in the frequency domain. We consider the random
Boussinesq equation (2.1-2.2) and take the time Fourier transform

û(ω, z) =
1

2π

∫

u(t, z) exp(−iωt)dt, η̂(ω, z) =
1

2π

∫

η(t, z) exp(−iωt)dt

so that the system reduces to a set of ordinary differential equations:

(

1− βω2(1 + εm(z))
) ∂η̂

∂z
+ iωû− εβω2m′(z)η̂ = 0(4.1)

∂û

∂z
+ iω (1 + εm(z)) η̂ = 0(4.2)

where m′ stands for the spatial derivative of m. We introduce the wavenumber k
corresponding to the pulsation ω:

k(ω) =
ω

√

1− βω2
(4.3)
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so that we can decompose the wave into right-going modes Aε and left-going modes

Bε over distances of propagation of order 1/ε2. We show explicitly the dependence
in the small parameter ε:

Aε(ω, z) =
1

2

(

η̂
(

ω,
z

ε2

)

+
k

ω
û
(

ω,
z

ε2

)

)

,(4.4)

Bε(ω, z) =
1

2

(

η̂
(

ω,
z

ε2

)

− k

ω
û
(

ω,
z

ε2

)

)

.(4.5)

The modes (Aε, Bε) satisfy:

∂Aε

∂z
= − ik

ε2
Aε − ik

2ε
m(z/ε2)(Aε + Bε) +

βk2

2ε
m′(z/ε2)(Aε + Bε)

− iω2

2kε2

(

1

1− βω2(1 + εm(z/ε2))
− 1

1− βω2

)

(Aε −Bε)

+
βω2

2ε
m′(

z

ε2
)

(

1

1− βω2(1 + εm(z/ε2))
− 1

1− βω2

)

(Aε + Bε)(4.6)

∂Bε

∂z
=

ik

ε2
Bε +

ik

2ε
m(z/ε2)(Aε + Bε) +

βk2

2ε
m′(z/ε2)(Aε + Bε)

− iω2

2kε2

(

1

1− βω2(1 + εm(z/ε2))
− 1

1− βω2

)

(Aε −Bε)

+
βω2

2ε
m′(

z

ε2
)

(

1

1− βω2(1 + εm(z/ε2))
− 1

1− βω2

)

(Aε + Bε)(4.7)

We expand the last terms of the right-hand sides up to O(ε3) terms

ω2

1− βω2(1 + εm(z/ε2))
− ω2

1− βω2
= εβk4m(z/ε2)+ ε2β2k6m2(z/ε2)+O(ε3).(4.8)

where the O(ε3) is a term that can be bounded by ε3β3k8‖m‖3
∞/(1−εβk2‖m‖∞). We

now look at the waves along the frequency-dependent modified characteristics defined
by

aε(ω, z) = Aε(ω, z) exp

(

ikz

ε2

)

exp

(

−εβk2

2
m(

z

ε2
)− ε2β2k4

4
m(

z

ε2
)2
)

(4.9)

bε(ω, z) = Bε(ω, z) exp

(

− ikz

ε2

)

exp

(

−εβk2

2
m(

z

ε2
)− ε2β2k4

4
m(

z

ε2
)2
)

(4.10)

which satisfy the linear equation

∂

∂z

(

aε

bε

)

(ω, z) = Qε(ω, z)

(

aε

bε

)

(ω, z).(4.11)

The complex 2× 2 matrix Qε is given by:

Qε(ω, z) =

(

Qε
1(ω, z) Qε

2(ω, z)e
2ikz

ε2

Qε
2(ω, z)e−

2ikz

ε2 Qε
1(ω, z)

)

(4.12)

with

Qε
1(ω, z) = − ik

2ε

(

1 + βk2
)

m(
z

ε2
)− iβ2k5

2
m2(

z

ε2
) + O(ε)(4.13)



6 J.-P. Fouque, J. Garnier, and A. Nachbin

-

−L/ε2 0 z

�

(uε
tr, η

ε
tr)(t)

-
0

�

(uinc, ηinc)(t)

-

(uε
ref , ηε

ref )(t)

Fig. 4.1. Scattering problem.

Qε
2(ω, z) = − ik

2ε

(

1− βk2
)

m(
z

ε2
) +

βk2

2ε
m′(

z

ε2
) +

iβ2k5

2
m2(

z

ε2
)

+
β2k4

2
m(

z

ε2
)m′(

z

ε2
) + O(ε).(4.14)

The small terms of order ε come from the O(ε3) term in the expansion (4.8).

4.2. Boundary values. We assume that a left-going pulse is incoming from
the right and is scattered into a reflected wave at z = 0 and a transmitted wave at
z = −L/ε2 (see Figure 4.1).

The incoming pulse shape is given by the elevation function f(t) where f is
assumed to be a L1 function compactly supported in the Fourier domain:

uinc(t, z = 0) = −
∫

ω

k(ω)
f̂(ω) exp(iωt)dω(4.15)

ηinc(t, z = 0) =

∫

f̂(ω) exp(iωt)dω(4.16)

with supp(f̂) ⊂ (−1/
√

β, 1/
√

β). We also impose a radiation condition at −L/ε2

corresponding to the absence of right-going wave at the left hand-side of the slab
[−L/ε2, 0]. The two-point boundary value problem consisting of the system (4.11) for
z ∈ [0, L] together with the conditions:

bε(ω, z = 0) = f̂(ω), aε(ω, z = −L) = 0

is then well-posed.

4.3. Propagator. It is convenient to transform the two-point boundary value
problem into an initial value problem by introducing the propagator Y ε(ω,−L, z)
which is a complex 2× 2 matrix solution of

∂Y ε

∂z
(ω,−L, z) = Qε(ω, z)Y ε(ω,−L, z), Y ε(ω,−L, z = −L) = IdC2

such that

Y ε(ω,−L, z)

(

aε(ω,−L)
bε(ω,−L)

)

=

(

aε(ω, z)
bε(ω, z)

)

.

By the form (4.12) of the matrix Qε, if the column vector (aε
1, b

ε
1)

T is solution of
equation (4.11) with the initial conditions:

aε
1(ω,−L) = 1, bε

1(ω,−L) = 0,(4.17)
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-

−L/ε2 0z/ε2

�
T ε(−L, z)

-
0

�
1

-
Rε(−L, z)

Fig. 4.2. Reflection and transmission coefficients.

then the column vector (bε
1, a

ε
1)

T is another solution linearly independent of the first
solution, so that the propagator matrix Y ε can be written as:

Y ε(ω,−L, z) =

(

aε
1 bε

1

bε
1 aε

1

)

(ω, z).

Note also that the matrix Qε has zero trace because Qε
1 = −Qε

1. As consequence, the
determinant of Y ε is conserved and (aε

1, b
ε
1) satisfies the relation:

det Y ε = |aε
1|2 − |bε

1|2 = 1.(4.18)

We can now define the transmission and reflection coefficients T ε(ω,−L, z) and
Rε(ω,−L, z), respectively, for a slab [−L, z] by (see also Figure 4.2):

Y ε(ω,−L, z)

(

0
T ε(ω,−L, z)

)

=

(

Rε(ω,−L, z)
1

)

.

In terms of the propagator entries they are given by:

Rε(ω,−L, z) =
bε
1

aε
1

(ω, z), T ε(ω,−L, z) =
1

aε
1

(ω, z)

and they satisfy the closed form nonlinear differential system:

∂Rε

∂z
= 2Qε

1(ω, z)Rε − e−
2ikz

ε2 Qε
2(ω, z)(Rε)2 + e

2ikz

ε2 Qε
2(ω, z),(4.19)

∂T ε

∂z
= −T ε

(

e−
2ikz

ε2 Qε
2(ω, z)Rε + Qε

1(ω, z)
)

,(4.20)

with the initial conditions at z = −L:

Rε(ω,−L, z = −L) = 0, T ε(ω,−L, z = −L) = 1.

Note that Eq. (4.18) implies the conservation of energy relation

|Rε|2 + |T ε|2 = 1(4.21)

and in turn the uniform boundedness of the transmission and reflection coefficients.
Note also that Rε and T ε are the reflection and transmission coefficients for the
modified characteristics (4.9-4.10). In terms of the real characteristics the reflection
and transmission coefficients are Rε and T ε exp(−ikL/ε2), respectively.
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4.4. Quantities of interest. The transmitted wave at time t, denoted by
(uε

tr, η
ε
tr), is the left-going wave which admits the following integral representation

in terms of the transmission coefficients:

uε
tr(t, z = − L

ε2
) = −

∫

ω

k(ω)
f̂(ω)T ε(ω,−L, 0) exp

(

iωt− ik(ω)
L

ε2

)

dω,(4.22)

ηε
tr(t, z = − L

ε2
) =

∫

f̂(ω)T ε(ω,−L, 0) exp

(

iωt− ik(ω)
L

ε2

)

dω.(4.23)

Similarly, the reflected wave (uε
ref , ηε

ref ) can be expressed in terms of the reflection
coefficients as:

uε
ref (t, z = 0) =

∫

ω

k(ω)
f̂(ω)Rε(ω,−L, 0) exp (iωt) dω,(4.24)

ηε
ref (t, z = 0) =

∫

f̂(ω)Rε(ω,−L, 0) exp (iωt) dω.(4.25)

These are the quantities that we will use as new initial conditions for the time reversal
experiments.

5. Time reversal setups.

5.1. Time reversal in reflection (TRR). The first step of the time reversal
procedure consists in recording the reflected signal at z = 0 up to a certain time.
It turns out that as ε → 0 the interesting asymptotic regime arises when we record
the signal up to a large time of order 1/ε2 which we denote by t1/ε2 with t1 > 0.
In the context of shallow water waves, one records only the elevation ηref . If the
recording were sufficiently long, one could deduce the depth-averaged velocity uref

by using (4.24,4.25), but this is not usually the case. If the recording is done over
an approximately flat region then, through equations (4.15,4.16) and the proper zero-
padding for Fourier transforming the elevation data ηref ≡ f , the consistent incoming
velocity field for the time reversal experiment can be well approximated. The zero-
padding is due to the cut-off function of the recorded signal as explained below.

In the second step of the time reversal procedure a piece of the recorded signal
is cut using a cut-off function s 7→ Gt1(ε

2s) where the support of Gt1 is included in
[0, t1]:

ηε
ref,cut(

t

ε2
) = ηε

ref (
t

ε2
)Gt1(t).

One then time reverses that piece of signal and re-emits the corresponding elevation
field with an amplification by two. No velocity field is generated. This gives rise to a
new wave can be decomposed as the sum of a right-going wave and a left-going wave.
The right-going wave propagates freely in the homogeneous right half-space and it
can be forgotten. The left-going wave is the new incoming signal. Accordingly, the
elevation of the time-reversed wave sent back into the medium is given by:

ηε
inc(TRR)(

t

ε2
, z = 0) = ηε

ref (
t1 − t

ε2
)Gt1 (t1 − t)

=
1

ε2

∫ ∫

exp

(

iω(t1 − t)

ε2

)

η̂ε
ref (ω′)Ĝt1(

ω − ω′

ε2
)dω′dω

=
1

ε2

∫ ∫

exp

(

iω(t− t1)

ε2

)

η̂ε
ref (ω′)Ĝt1(

ω − ω′

ε2
)dω′dω,(5.1)
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where TRR stands for “Time Reversal in Reflection”. Here we have used the fact
that ηε

ref is a real-valued signal, and also that k(−ω) = −k(ω) by Eq. (4.3), which
is actually a direct consequence of the time reversibility of the Boussinesq equation.
The new incoming (left-going) velocity is given by:

uε
inc(TRR)(

t

ε2
, z = 0) = − 1

ε2

∫ ∫

ω

k(ω)
e

iω(t−t1)

ε2 η̂ε
ref (ω′)Ĝt1(

ω − ω′

ε2
)dω′dω.(5.2)

A right-going velicity wave is also generated, but it propagates freely with the right-
going elevation wave mentioned above and it can be forgotten as well. Note that the
reason why we have amplified by a factor two the generated elevation field is that it
gives rise to two counter-propagating waves which both contain half of the generated
energy.

The new incoming signal (5.1-5.2) re-propagates into the same medium, and gen-
erates a new reflected signal which we observe at the time t2/ε2+t, that is, around the
time t2/ε2 in the scale of the initial pulse f(t). In terms of the reflection coefficients
the observed reflected elevation signal is given by

ηε
ref(TRR)(

t2
ε2

+ t, z = 0) =

∫

η̂ε
inc(TR)(ω)Rε(ω,−L, 0)e

iωt2
ε2 +iωtdω.

Substituting the expression of η̂ε
inc(TRR) into this equation yields the following repre-

sentation of the reflected signal:

ηε
ref(TRR)(

t2
ε2

+ t, z = 0) =
1

ε2

∫ ∫

eiωte
iω(t2−t1)

ε2 f̂(ω′)Ĝt1(
ω − ω′

ε2
)

×Rε(ω,−L, 0)Rε(ω′,−L, 0)dω′dω.

After the change of variable ω′ = ω − ε2h the representation becomes

ηε
ref(TRR)(

t2
ε2

+ t, z = 0) =

∫ ∫

eiωte
iω(t2−t1)

ε2 f̂(ω − ε2h)Ĝt1(h)

×Rε(ω,−L, 0)Rε(ω − ε2h,−L, 0)dh dω.(5.3)

Note that by Eq. (4.21) the reflection coefficients are bounded and we shall show
in Section 6 that the rapid phase exp(iω(t2 − t1)/ε2) averages out the integral ex-
cept when t2 = t1. This means that refocusing can be observed only at the time
t2/ε2 = t1/ε2. The precise description of the refocused pulse taking into account the
interaction between randomness and dispersion will be carried out in Section 6.

5.2. Transmitted front wave. Before going into time reversal in transmission
we give an integral representation for the coherent transmitted wave front observed
at z = −L/ε2 around the effective arrival time L/ε2. By Eq. (4.23), the transmitted
elevation front is given by:

ηε
tr(

L

ε2
+ t, z = − L

ε2
) =

∫

eiωtei(ω−k(ω)) L

ε2 f̂(ω)T ε(ω,−L, 0)dω.(5.4)

Note that expressions like t + L arise because constants have been set to one, so that
the mean velocity is one. Due to dispersion, k(ω) is different from ω (see Eq. (4.3)).
As a consequence, if β = O(1), then the rapid phase exp(i(ω− k(ω))L/ε2) makes the
integral vanish as ε → 0. This is in dramatic contrast with the hyperbolic case (β = 0)
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where the coherent transmitted wave persists in this regime as a manifestation of the
well known O’Doherty-Anstey theory studied in [8, 17, 25] in various situations.

In the dispersive case, the front will be present if the dispersion parameter β
is small enough. This has been characterized and observed numerically in [18]. In
particular, in the regime where β = ε2β0, we can derive its precise shape resulting
from the interplay of randomness and dispersion. In that regime, by expanding the
dispersion relation ω 7→ k(ω), we get that the front is given by:

ηε
tr(

L

ε2
+ t, z = − L

ε2
) =

∫

eiωte−iβ0ω3Lf̂(ω)T ε(ω,−L, 0)dω + O(ε2).

The transmission coefficients are given by T ε(ω,−L, 0) = 1/aε
1(ω, 0) where aε

1 satisfies
(4.11) with the initial conditions (4.17). In the case β = ε2β0, the entries of the matrix
Qε can be expanded as:

Qε
1(ω, z)|β=β0ε2 = − ik

2ε
m(z/ε2) + O(ε),

Qε
2(ω, z)|β=β0ε2 = − ik

2ε
m(z/ε2) + O(ε),

so that we get the same system as in the hyperbolic case up to terms of order ε.
The limit of ηε

tr has been derived for the hyperbolic case with small fluctuations
[2, 25]. In our case the derivation of the limit follows the same lines except for the
deterministic phase exp(−iβ0ω

3L) due to the small dispersion. The process (ηε
tr(

L
ε2 +

t, z = − L
ε2 ))t∈(−∞,+∞) converges in the space of the continuous and bounded functions

to

ηtr(t) =

∫

f̂(ω) exp

(

iω(t−
√

γ(0)

2
BL)− ω2γ(ω)

4
L− iβ0ω

3L

)

dω,

where BL is a standard Brownian motion and γ is

γ(ω) =

∫ ∞

0

E[m(0)m(z)]e2iωzdz.(5.5)

Using convolution operators the transmitted front can be written in a simpler form:

ηtr(t) = f ∗K

(

t−
√

γ(0)

2
BL

)

,(5.6)

which means that a random Gaussian centering appears through the Brownian motion
BL while the pulse shape spreads in a deterministic way through the convolution by
the kernel K

K(t) = Kr ∗Kd(t).

Here Kd is the scaled Airy function [1]

Kd(t) =
1

(3β0L)1/3
Ai

(

− t

(3β0L)1/3

)

and the Fourier transform of Kr is

K̂r(ω) = exp

(

−ω2γ(ω)L

4

)

.
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Note that the kernel K depends both on randomness (through the function γ) and on
dispersion (through the parameter β0). This stochastic formulation is in agreement
with the formulation presented in [18] for small β and was validated numerically with
the same code used in this paper.

Observe that a dispersion parameter β = O(1) or even O(εp) with p < 2 leaves
a fast phase in the integral representation of the transmitted front as can be seen in
Eq. (5.4). This implies a dramatic spreading of the pulse for a propagation distance of
order 1/ε2, so that no coherent front pulse can be observed at the output z = −L/ε2.
In that case we are led to perform time reversal using the coda of the transmitted
wave containing the incoherent fluctuations.

5.3. Time reversal in transmission (TRT). We now come back to the case of
a dispersion parameter β of order 1. The time reversal procedure consists in recording
the transmitted coda signal at z = −L/ε2 over the time interval [(L + t0)/ε2, (L +
t1)/ε2]. A piece of the recorded signal is cut using a cut-off function s 7→ Gt0,t1(ε

2s−L)
where the support of Gt0,t1 is included in [t0, t1]:

ηε
tr,cut(

t

ε2
) = ηε

tr(
L + t

ε2
, z = − L

ε2
)Gt0,t1(t).

One then time reverses that piece of signal and sends it back into the same medium.
As in Section 5.1 one usually (only) records the elevation ηtr. Since the velocity
field is not recorded one actually generates the time reversed elevation field with an
amplification by two, which in turn generates two counter-propagating waves with
equal energies. Numerically we can record both the wave elevation and the velocity
field. We will present examples comparing these two cases and show that the refocused
pulse is the same. The elevation of the wave sent back is given by

ηε
inc(TRT )(

t

ε2
, z = − L

ε2
) = ηε

tr(
L + t1 − t

ε2
, z = − L

ε2
)Gt0,t1 (t1 − t)

=
1

ε2

∫ ∫

exp

(

iω(t1 − t)

ε2

)

η̂ε
tr(ω

′)Ĝt0,t1(
ω − ω′

ε2
)dω′dω

where η̂ε
tr is the Fourier transform of the shifted received signal t 7→ ηε

tr(
L+t
ε2 , z = − L

ε2 ):

η̂ε
tr(ω) = ei(ω−k(ω)) L

ε2 f̂(ω)T ε(ω,−L, 0).

Also ηε
inc(TRT ) reads as:

ηε
inc(TRT )(

t

ε2
, z = − L

ε2
) =

1

ε2

∫ ∫

exp

(

iω(t− t1)

ε2

)

η̂ε
tr(ω

′)Ĝt0,t1(
ω − ω′

ε2
)dω′dω.

Let us denote by R̃ε and T̃ ε the reflection and transmission coefficients for the
experiment corresponding to a right-going input wave incoming from the left (see
Figure 5.1). Using the propagator Y ε defined in Section 4.3, R̃ε and T̃ ε obey the
relation

Y ε(ω,−L, 0)

(

1

R̃ε(ω,−L, 0)

)

=

(

T̃ ε(ω,−L, 0)
0

)

.

In terms of the propagator entries they are given by:

R̃ε(ω,−L, 0) = − bε
1

aε
1

(ω, 0), T̃ ε(ω,−L, 0) =
1

aε
1

(ω, 0)
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-

−L/ε2 0

�
R̃ε(−L, 0)

-
1

�
0

-
T̃ ε(−L, 0)

Fig. 5.1. Adjoint reflection and transmission coefficients for time reversal.

which shows that

T̃ ε(ω,−L, 0) = T ε(ω,−L, 0).

Accordingly, the new incoming signal re-propagates into the same medium, and gen-
erates a new transmitted signal which we observe at the time t2/ε2 + t that is around
the time t2/ε2 in the scale of the initial pulse f(t). In terms of the transmission
coefficients the observed transmitted elevation signal is given by

ηε
tr(TRT )(

t2
ε2

+ t, z = 0) =

∫

η̂ε
inc(TRT )(ω)T ε(ω,−L, 0)e

iωt2
ε2 +iωte−ik(ω) L

ε2 dω.

Substituting the expression of η̂ε
inc(TRT ) into this equation yields the following repre-

sentation of the new transmitted signal

ηε
tr(TRT )(

t2
ε2

+ t, z = 0) =
1

ε2

∫ ∫

eiωte
iω(t2−t1−L)

ε2 f̂(ω′)Ĝt0,t1(
ω − ω′

ε2
)

×ei(k(ω′)−k(ω)) L

ε2 e−i(ω′−ω) L

ε2 T ε(ω,−L, 0)T ε(ω′,−L, 0)dω′dω.

After the change of variable ω′ = ω − ε2h the representation becomes

ηε
tr(TRT )(

t2
ε2

+ t, z = 0) =

∫ ∫

eiωte
iω(t2−t1−L)

ε2 f̂(ω − ε2h)Ĝt0,t1(h)

×ei(k(ω−ε2h)−k(ω)) L

ε2 eihLT ε(ω,−L, 0)T ε(ω − ε2h,−L, 0)dh dω.(5.7)

The precise asymptotics of the transmitted wave will be carried out in Section 7. It
is easily seen that the refocusing will only take place if t2 = L + t1 due to the fast
phase.

5.4. Time reversal in transmission in homogeneous medium. One appli-
cation of time reversal in transmission is the source reconstruction when the medium
is known. This is motivated by the problem of waveform inversion for water waves
studied in [24], where the goal is to characterize the initial sea surface displacement
due to tsunamigenic earthquakes. Mathematically, in the context of this paper, the
source inversion problem consists in performing time reversal in transmission. The
re-propagation of the time-reversed transmitted wave is performed by solving numer-
ically the corresponding wave equation. In the case of the time reversal experiment
for a dispersive homogeneous medium, we observe a transmitted signal and would
like to recover both the location and the pulse shape of the source. This implies the
recompression of the dispersive oscillatory coda of the transmitted wave. Dispersion
helps the source location identification. This is in contrast with (traveling) hyperbolic
waves in a homogeneous medium.
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Taking T ε = 1 in Eq. (5.7) gives the transmitted signal in homogeneous medium.
Observe that the quantities become independent of ε so that it can be taken to be
equal to 1. We then get

ηtr(TRT )(t1 + L + t, z) =

∫ ∫

eiωt−ik(ω)z f̂(ω − h)Ĝt0,t1(h)ei(k(ω−h)−k(ω))LeihLdh dω

where we look at two cases:
(a) Hyperbolic case: If β = 0, then k(ω) = ω so the transmitted wave is

ηtr(TRT )(t1 + L + t, z) =

∫ ∫

eiω(t−z)f̂(ω − h)Ĝt0,t1(h)dh dω

which yields a traveling wave

ηtr(TRT )(t1 + L + t, z) = (Gt0,t1f)(z − t).

On the one hand, it is impossible to retrieve the source location from this traveling
wave. On the other hand, as soon as the support of the cut-off function is larger than
the pulse width, then the reconstruction of the pulse shape is perfect.

(b) Dispersive case: If β 6= 0 and (βL)1/3 is much larger than the pulse width,
then

ηtr(TRT )(t1 + L + t, z) = Kz,L ∗ f(z − t)

where the kernel Kz,L is given by:

Kz,L(t) = Kz ∗KL(t)

Kz(t) =
1

(3βz)1/3
Ai

(

t

(3βz)1/3

)

K̂L(ω) = Gt0,t1

(

((1 + βk(ω)2)3/2 − 1)L
)

.

The Airy kernel Kz results from the action of dispersion on the refocused pulse around
the original source location. Let us denote zc = T 3

w/(3β) where Tw is the pulse width.
If z < −zc, then pulse refocusing is not yet completed and the oscillatory tail is not
yet recompressed. If z > zc, then the pulse starts developing the dispersive tail again.
When z ∈ [−zc, zc] the oscillatory tail vanishes and the kernel Kzis close to a Dirac
mass. This shows that dispersion enhances the resolution of the source location since
zc decays with increasing β. However the reconstruction of the source shape is blurred

by dispersive effects since the cut-off function G deletes a frequency band that is all
the larger as β is larger.

6. Asymptotics of the refocused pulse in reflection. From now on we
assume that β is of order 1. The integral representation (5.3) of the reflected signal
shows that the autocorrelation function of the reflection coefficient at two nearby
frequencies will play an important role.

6.1. The frequency autocorrelation function of the reflection coeffi-
cient. We shall study the symmetric version:

Uε
1,1(ω, h, z) = Rε(ω +

ε2h

2
,−L, z)Rε(ω − ε2h

2
,−L, z)
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and we shall extend the approach developed in [2, 7] to the dispersive case. It is
necessary to consider a family of moments so as to get a closed system of equations.
We thus introduce for n, p ∈ N

Uε
n,p(ω, h, z) =

(

Rε(ω +
ε2h

2
,−L, z)

)n(

Rε(ω − ε2h

2
,−L, z)

)p

.

Denoting

k′(ω) =
∂k

∂ω
(ω) =

1

(1− βω2)3/2
= (1 + βk2)3/2,(6.1)

and using the Riccati equation (4.19) satisfied by Rε, we deduce

∂Uε
n,p

∂z
= 2(n− p)Qε

1U
ε
n,p + Qε

2e
2ik(ω)z

ε2

(

neik′(ω)hzUε
n−1,p − pe−ik′(ω)hzUε

n,p+1

)

+Qε
2e
− 2ik(ω)z

ε2

(

peik′(ω)hzUε
n,p−1 − ne−ik′(ω)hzUε

n+1,p

)

starting from

Uε
n,p(ω, h, z = −L) = 10(n)10(p),

where 10(n) = 1 if n = 0 and 0 otherwise. Taking a shifted scaled Fourier transform
with respect to h

V ε
n,p(ω, τ, z) =

k′(ω)

2π

∫

eihk′(ω)(τ−(n+p)z)Uε
n,p(ω, h, z)dh

we get

∂V ε
n,p

∂z
= −(n + p)

∂V ε
n,p

∂τ
+ 2(n− p)Qε

1V
ε
n,p

+Qε
2e

2ik(ω)z

ε2
(

nV ε
n−1,p − pV ε

n,p+1

)

+ Qε
2e
− 2ik(ω)z

ε2
(

pV ε
n,p−1 − nV ε

n+1,p

)

starting from

V ε
n,p(ω, τ, z = −L) = δ(τ)10(n)10(p).

Applying a diffusion-approximation theorem [2, Section 3] establishes that the pro-
cesses V ε

n,p converge to diffusion processes as ε → 0. In particular the expectations
E[V ε

n,n(ω, τ, z)], n ∈ N, converge to Wn(ω, τ, z) which obey the closed system of trans-
port equations:

∂Wn

∂z
+ 2n

∂Wn

∂τ
=

1

2
αβ(ω)k(ω)2n2 (Wn+1 + Wn−1 − 2Wn)(6.2)

Wn(ω, τ, z = −L) = δ(τ)10(n)

where

αβ(ω) = α(k(ω))(1 + βk(ω)2)2 = α(ω/
√

1− βω2)/(1− βω2)2(6.3)

and α is proportional to the power spectral density of the random process m

α(k) =

∫ ∞

0

E[m(0)m(z)] cos(2kz)dz.(6.4)
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Note that the limit transport equations (6.2) have the same form as the ones obtained
in the non-dispersive case in [2]. The difference is contained in the rate coefficient
αβ(ω)k(ω)2 which is simply α0(ω)ω2 in the hyperbolic case. We then get the limit of
the autocorrelation function of the reflection coefficient:

E

[

Rε(ω +
ε2h

2
,−L, 0)Rε(ω − ε2h

2
,−L, 0)

]

ε→0−→
∫

ΛL
ref (ω, τ)e−ihτdτ,(6.5)

ΛL
ref (ω, τ) = k′(ω)−1W1(ω, k′(ω)−1τ, 0).(6.6)

The quantity W1(ω, τ, 0) is obtained through the system of transport equations (6.2)
which we study in the next section.

6.2. Analysis of the transport equations. We can interpret the transport
equation (6.2) in terms of a jump Markov process. Let us introduce the process
(Nt)t≥0 with state space N and infinitesimal generator

Lφ(N) =
1

2
αβ(ω)k(ω)2N2 (φ(N + 1) + φ(N − 1)− 2φ(N)) .

As in [2] we deduce:

∫ τ1

τ0

W1(ω, τ, 0)dτ = P1

(

∫ L

0

2Nsds ∈ [τ0, τ1] , NL = 0

)

where Pp0 stands for the probability over the distribution of the jump process starting
from N0 = p0. Taking τ0 = 0 and τ1 = ∞ yields

E
[

|Rε|2(ω,−L, 0)
] ε→0−→ P1(NL = 0).

It is remarkable that the generating function of the jump process can be expressed in
terms of the expectation of some functional of the diffusion process (θt)t≥0:

dθt =
√

αβ(ω)k(ω)dBt +
1

2
αβ(ω)k(ω)2 coth(θt)dt.(6.7)

We have

Ep0

[

zNt
]

= E

[

tanh(
θt

2
)2p0 | θ0 = 2 argtanh(

√
z)

]

,

where Ep0 stands for the expectation with respect to the distribution of the jump
process starting from N0 = p0. In particular

E
[

|Rε|2(ω,−L, 0)
] ε→0−→ P1(NL = 0) = E

[

tanh(
θL

2
)2 | θ0 = 0

]

.

As the probability density function of the diffusion process (θt) is known [21], we get

E
[

|Rε|2(ω,−L, 0)
] ε→0−→ 1− 4√

π
exp

(

− L

lβ(ω)

)
∫ ∞

0

x2e−x2

cosh
(

2
√

L/lβ(ω)x
)dx

where the localization length lβ(ω) of the mean transmittance is affected by the dis-
persion:

lβ(ω) =
8

αβ(k(ω))k(ω)2
=

8(1− βω2)3

α(ω/
√

1− βω2))ω2
.(6.8)
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If the power spectral density of the process m can be considered as constant α(k) ≡ α0,
that is to say when the correlation length of the medium is smaller than the typical
wavelength of the pulse, then the above expression of the localization length shows
that dispersion enhances localization effects. The decay of the localization length as a
function of frequency is faster in the dispersive case than in the hyperbolic case. This
has been observed numerically in [18].

6.3. The refocused pulse. Choosing t2 = t1 in Eq. (5.3) shows that the refo-
cused pulse at z = 0 is given by the integral representation:

ηε
ref(TRR)(

t1
ε2

+ t, z = 0) =

∫ ∫

eiωtf̂(ω − ε2h)Ĝt1(h)

×Rε(ω,−L, 0)Rε(ω − ε2h,−L, 0)dh dω.(6.9)

The main result of this section is the self-averaging property of the refocused pulse.
This is shown in the following theorem which gives the convergence of the refocused
pulse to a deterministic shape.

Theorem 6.1. For any T > 0, δ > 0,

P

(

sup
t∈[−T,T ]

∣

∣

∣

∣

ηε
ref(TRR)(

t1
ε2

+ t, z = 0)− ηref(TRR)(t)

∣

∣

∣

∣

> δ

)

ε→0−→ 0

where ηref(TRR) is the deterministic pulse shape:

ηref(TRR)(t) = (f(− ·) ∗KTRR(·)) (t).(6.10)

The Fourier transform of the kernel KTRR is the convolution of the time-inverted

cut-off function Gt1 with the density τ 7→ ΛL
ref (ω, τ) evaluated at 0:

K̂TRR(ω) =
(

Gt1(− ·) ∗ΛL
ref (ω, ·)

)

(0) =

∫

Gt1(τ)ΛL
ref (ω, τ)dτ.(6.11)

Proof. The first step consists in proving the tightness (i.e. the relative compact-
ness) in the space of continuous trajectories (equipped with the topology associated
to the sup norm over the compact subsets) of the family of continuous processes

(

(ηε
ref(TRR)(t1/ε2 + t, z = 0))−∞<t<∞

)

ε>0
.

From Eq. (6.9) and the uniform bound |Rε| ≤ 1, it is easily seen that the quantity
|ηε

ref(TRR)(t1/ε2 + t, z = 0)| is uniformly bounded by

∫

|Ĝ(h)|dh×
∫

|f̂(ω)|dω

which we assume finite. The modulus of continuity

Ωε(s) = sup
|s1−s2|≤s

∣

∣

∣

∣

ηε
ref(TRR)(

t1
ε2

+ s1, z = 0)− ηε
ref(TRR)(

t1
ε2

+ s2, z = 0)

∣

∣

∣

∣

is bounded by

Ωε(s) ≤
∫

|Ĝ(h)|dh×
∫

sup
|s1−s2|≤s

|eiω(s2−s1) − 1||f̂(ω)|dω
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which goes to zero as s → 0 uniformly with respect to ε by Lebesgue’s theorem and
ensures tightness.

Taking the expectation in Eq. (6.9), and using Eq. (6.5), we get the convergence
of the first moment:

lim
ε→0

E[ηε
ref(TRR)(

t1
ε2

+ t, z = 0)] =

∫ ∫

eiωtf̂(ω)Ĝt1(h)

∫

e−ihτΛL
ref (ω, τ)dτdhdω

=

∫ ∫

eiωtf̂(ω)Gt1(τ)ΛL
ref (ω, τ)dτdω

= (f(− .) ∗KTRR(.)) (t) = ηref(TRR(t).

In order to prove the convergence in probability of ηε
ref(TRR)(t1/ε2 + t, z = 0) to the

deterministic refocused pulse ηref(TRR), we compute its second moment and show
that it converges to the square of the first moment obtained above. This computation
has been done in the acoustic case [9] using the moment analysis of the reflected
signal established in [7]. The second moment involves the moment of the product of
the reflection coefficients at four frequencies. The presence of the cut-off function Gt1

used in time reversal automatically pairs the frequencies. The moment analysis then
shows that the reflection coefficients for the two pairs become independent, which
proves the result. The same techniques apply to the dispersive case since the Riccati
equation (4.19) for the reflection coefficient has the same form as in the acoustic case.

As for acoustic waves the case of a large slab (L large) leads to explicit formulas
for the refocused pulse. This is developed in the following section.

6.4. Large slab. For acoustic waves the hyperbolicity of the equations makes
the reflected quantities of interest independent of L for L large enough. This leads
to explicit formulas for the power spectral density ΛL

ref . In our context of dispersive
waves, the velocities of the waves are still bounded as we consider a pulse with com-
pactly supported spectrum. For this reason, the power spectral density also becomes
independent of L for L large enough. Applying the same approach as in [2] (where
the case of acoustic waves was addressed), we get that the function ΛL

ref converges as
L grows to infinity to the limit density:

Λ∞ref (ω, τ) =
κβ(ω)ω2

(1 + κβ(ω)ω2τ)
2(6.12)

where

κβ(ω) =
αβ(ω)k(ω)2

4ω2k′(ω)
=

α(ω/
√

1− βω2)

4 (1− βω2)
3/2

.

The deterministic refocused pulse is then given by Eq. (6.10) with the explicit Λ∞ref

derived in this section. Taking for instance a square cut-off function Gt1(t) = 1[0,t1](t),
the kernel KTRR reads as a high-band filter because its Fourier transform is:

K̂TRR(ω) =
κβ(ω)ω2t1

1 + κβ(ω)ω2t1
.(6.13)

An example is presented in Fig. 6.1. The cut-off frequency of the filter K̂TRR

decays with increasing dispersion parameter β. This shows that time reversal focusing
in reflection is more efficient in the dispersive case than in the hyperbolic case. This
is consistent with the observation that localization effects are enhanced in presence of
dispersion (Eq. (6.8)).
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Fig. 6.1. Fourier transform of the convolution kernel KTRR (picture a) and refocused pulse
(picture b). We consider a square cut-off function G(t) = 1[0,t1](t) and we assume α(ω) ≡ 4, t1 = 1.

The initial pulse has sinc shape f(t) = sin(t)/t, and its spectrum is f̂(ω) = (1/2)1[−1,1](ω) (note
that β = 1 corresponds to a very dispersive configuration).

7. Asymptotics of refocused pulse in transmission.

7.1. The frequency autocorrelation function of the transmission coef-
ficient. We study here the autocorrelation function of the transmission coefficient at
two nearby frequencies. We first define a new family of processes indexed by n, p ∈ N

Ũε
n,p(ω, h, z) = U ε

n,p(ω, h, z)T ε(ω +
ε2h

2
,−L, z)T ε(ω − ε2h

2
,−L, z)

which satisfy

∂Ũε
n,p

∂z
= 2(n− p)Qε

1Ũ
ε
n,p + Qε

2e
2ik(ω)z

ε2

(

neik′(ω)hzŨε
n−1,p − (p + 1)e−ik′(ω)hzŨε

n,p+1

)

+Qε
2e
− 2ik(ω)z

ε2

(

peik′(ω)hzŨε
n,p−1 − (n + 1)e−ik′(ω)hzŨε

n+1,p

)

starting from

Ũε
n,p(ω, h, z = −L) = 10(n)10(p).

Taking a shifted scaled Fourier transform with respect to h

Ṽ ε
n,p(ω, τ, z) =

k′(ω)

2π

∫

eihk′(ω)(τ−(n+p)z)Ũε
n,p(ω, h, z)dh

we get

∂Ṽ ε
n,p

∂z
= −(n + p)

∂Ṽ ε
n,p

∂τ
+ 2(n− p)Qε

1Ṽ
ε
n,p

+Qε
2e

2ik(ω)z

ε2

(

nṼ ε
n−1,p − (p + 1)Ṽ ε

n,p+1

)

+ Qε
2e
− 2ik(ω)z

ε2

(

pṼ ε
n,p−1 − (n + 1)Ṽ ε

n+1,p

)

starting from

Ṽ ε
n,p(ω, τ, z = −L) = δ(τ)10(n)10(p).

Applying a diffusion-approximation theorem [2, Section 3.14] establishes that the
processes Ṽ ε

n,p converge to diffusion processes as ε → 0. In particular the expectations
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E[Ṽ ε
n,n(ω, τ, z)] converge to W̃n(ω, τ, z) which obey the closed system of transport

equations:

∂W̃n

∂z
+ 2n

∂W̃n

∂τ
=

1

2
αβ(ω)k(ω)2

(

(n + 1)2W̃n+1 + n2W̃n−1 − ((n + 1)2 + n2)W̃n

)

,

W̃n(ω, τ, z = −L) = δ(τ)10(n).

We then get the limit of the autocorrelation function of the transmission coefficient:

E

[

T ε(ω +
ε2h

2
,−L, 0)T ε(ω − ε2h

2
,−L, 0)

]

ε→0−→
∫

ΛL
tr(ω, τ)e−ihτdτ(7.1)

ΛL
tr(ω, τ) = k′(ω)−1W̃0(ω, k′(ω)−1τ, 0).(7.2)

7.2. Analysis of the transport equations. We can interpret the transport
equation in terms of a jump Markov process as in Section 6.2. Let us introduce the
process (Ñt)t≥0 with state space N and infinitesimal generator:

L̃φ(Ñ ) =
1

2
αβ(ω)k(ω)2

(

(Ñ + 1)2(φ(Ñ + 1)− φ(Ñ )) + Ñ2(φ(Ñ − 1)− φ(Ñ ))
)

.

Note that L̃ is the adjoint of the generator L of the process (Nt)t≥0, which means

that (Ñt)t≥0 is the time-reversed process of (Nt)t≥0. We have

∫ τ1

τ0

W̃0(ω, dτ, 0) = P̃0

(

∫ L

0

2Ñsds ∈ [τ0, τ1] , ÑL = 0

)

(7.3)

where P̃p0 stands for the probability over the distribution of the jump process starting

from Ñ0 = p0. The generating function of the jump process is again expressed in
terms of the expectation of some functional of the diffusion process (θt)t≥0 defined by
Eq. (6.7):

Ẽp0

[

zÑt

]

= E

[(

1− tanh(
θt

2
)2
)

tanh(
θt

2
)2p0 | θ0 = 2 argtanh(

√
z)

]

.

It should be noted also that W̃0 is not a density with respect the Lebesgue measure
over R

+ (while W1 is a density as seen in Section 6.2). It consists actually of the sum
of a Dirac mass at 0 and a density:

W̃0(ω, dτ, 0) = pω,dδ0(dτ) + W̃0,c(ω, dτ, 0).

This expression is obtained by disintegrating the right-hand side of Eq. (7.3) over the
first jump time of the process (Ñ)t≥0. The weight of the Dirac mass is

pω,d = exp

(

− 4L

lβ(ω)

)

while the absolutely continuous part is given by

∫ τ1

0

W̃0,c(ω, τ, 0)dτ =

∫ L

0

4

lβ(ω)
e
−4(L−t)

lβ(ω)
P̃1

(
∫ t

0

2Ñsds ∈ [0, τ1] , Ñt = 0

)

dt.

It seems not possible to derive a closed form expression for the density part. We
can either derive expansions, or perform numerical simulations based on Monte-Carlo
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simulations of the random jump process (Ñt)t≥0. For instance, we can expand W̃0,c

for small τ . Indeed if τ1 � lβ(ω) then

P̃1

(
∫ t

0

2Ñsds ∈ [0, τ1] , Ñt = 0

)

' 2τ1

lβ(ω)
exp

(

− 4t

lβ(ω)

)

so that

W̃0,c(ω, τ, 0)
τ�lβ(ω)
' exp

(

− 4L

lβ(ω)

)

8L

lβ(ω)2
.

This approximate expression will be used in the next section to give a closed form
expression of the refocused pulse in a particular regime.

7.3. The refocused pulse. The following theorem expresses the self-averaging
property of the refocused pulse.

Theorem 7.1. For any T > 0, δ > 0,

P

(

sup
t∈[−T,T ]

∣

∣

∣

∣

ηε
tr(TRT )(

t1 + L

ε2
+ t, z = 0)− ηtr(TRT )(t)

∣

∣

∣

∣

> δ

)

ε→0−→ 0

where ηtr(TRT ) is the refocused pulse shape:

ηtr(TRT )(t) = (f(− ·) ∗KTRT (·)) (t).(7.4)

The Fourier transform of the kernel is the convolution of the time-inverted cut-off

function Gt0,t1 with the density τ 7→ ΛL
tr(ω, τ) evaluated at (1− k′(ω))L:

K̂TRT (ω) =
(

Gt0,t1(− ·) ∗ ΛL
tr(ω, ·)

)

((1− k′(ω))L)

=

∫

Gt0,t1(τ − (1− k′(ω))L)ΛL
tr(ω, dτ).(7.5)

Proof. The proof follows the same lines as the one of Theorem 6.1 with the
transport equations corresponding to the transmission problem.
Homogeneous dispersive case. Assume here that randomness is absent (αβ(ω) ≡
0). Then ΛL

tr(ω, τ) = δ0(τ), so that

K̂TRT (ω) = Gt0,t1((k
′(ω)− 1)L)

which is consistent with the results of Section 5.4 at z = 0.
Random non-dispersive case. Assume here that β = 0. Consider an input pulse
f which is such that the power spectral density of the process m can be considered as
constant over the spectral range [−ωmax, ωmax] of f : α(ω) ≡ α0. Finally assume that
we record a small piece of the transmitted wave in the sense that the cut-off function
Gt0,t1 has its support in [t0, t1] such that t0 < 0 and t1 > 0 with α0ω

2
maxt1 � 1. Then

K̂TRT (ω) = e−
α0ω2L

2

(

Gt0,t1(0) +
α2

0ω
4L

8
〈Gt0,t1〉

)

where 〈Gt0,t1〉 =
∫∞

0
Gt0,t1(t)dt, so that:

ηtr(TRT )(t) = Gt0,t1(0) (f(− ·) ∗KTRT,1(·)) (t) + 〈Gt0,t1〉 (f(− ·) ∗KTRT,2(·)) (t)

K̂TRT,1(ω) = e−
α0ω2L

2

K̂TRT,2(ω) =
α2

0ω
4L

8
e−

α0ω2L

2 .
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The convolution kernel KTRT,1 results from the double action of the O’Doherty-
Anstey theory on the front pulse in forward and backward directions. Of course this
contribution completely vanishes if we do not record the front of the pulse (Gt0,t1(0) =
0). The convolution kernel KTRT,2 is a filter that retains only the frequencies around
1/
√

α0L, those which can probe the medium without being completely reflected by
the strong localization effect.

7.4. Numerical illustrations. We would like to illustrate results obtained in
the previous section. We consider the hyperbolic random case discussed in Subsection
7.3. In Figure 7.1 we plot the Fourier transform of the kernel KTRT for three different
time reversal calculations corresponding to three different cut-off functions Gt0,t1 that
we shall denote by G1, G2, and G3. In the first calculation, we only record the front
pulse, and send it back into the medium G1(0) = 1, 〈G1〉 � L. We may think for
instance that

G1(t) = cos2(
t

t1
)1[−πt1/2,πt1/2](t),

with α0ω
2
maxt1 � 1 and t1 � L. The refocused pulse results from the action of the

O’Doherty-Anstey theory and its shape is the convolution of the initial pulse shape
with the kernel KTRT,1 (solid line, Fig. 7.1).

In the second calculation, we record a small piece of the coda but not the front
pulse G2(0) = 0, 〈G2〉 = 4L. We may think for instance that

G2(t) =
8L

πt1
sin2(

t

t1
)1[0,πt1](t),

with α0ω
2
maxt1 ' 0.1 − 0.2. Only medium range frequencies have been recorded, so

that the refocused pulse shape is the convolution of the initial pulse shape with the
kernel KTRT,2 (dashed line, Fig. 7.1).

In the third calculation, we record both the front pulse and a piece of the coda,
so that G3(0) = 1, 〈G3〉 ' 3.2L. We may think for instance that

G3(t) =
6.4L

πt1
sin2(

t + t0
t1

)1[−πt0,π(t1−t0)](t),

with α0ω
2
maxt1 ' 0.1 − 0.2 and t0 '

√

πt31/(6.4L). In such a case a broad range of
frequencies are recorded and the cut-off function has been chosen in such a way that
the weighted sum of the two kernels KTRT,1 and KTRT,2 define a kernel KTRT with a
large band of frequencies (dash-dotted line, Fig. 7.1). As a result, the refocused pulse
is close to the initial pulse.

It has been observed experimentally [10] that re-transmitting part of the coda
produces better refocusing than re-sending the front. This observation addresses
spatial refocusing, while in this paper we focus our attention to time refocusing.
The above illustrations show that the contributions of the coda and the front to the
refocused pulse are actually complimentary. The contribution of the front is concerned
with the low-frequency components of the pulse, while the contribution of the coda
is concerned with the high-frequency components of the pulse. If we extrapolate this
observation in 3D configurations, then we can understand the quoted experimental
observation in the sense that the high-frequency components are the ones that are
expected to give the precise location of the source point.
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Fig. 7.1. Fourier transform of the convolution kernel KTRT (picture a) and refocused pulse
(picture b). We consider the three cut-off functions G1, G2, G3 described within the text. Here we
assume α(ω) ≡ 1, L = 1. The initial pulse has Gaussian shape f(t) = exp(−t2/2).

7.5. TRT numerical experiments and application to source reconstruc-
tion. In this section we further illustrate time reversal in transmission (TRT). A nu-
merical method for the nonlinear terrain-following Boussinesq equation has been fully
described in [19]. In this section we describe time reversal experiments in transmission
by performing numerical experiments corresponding to the linearized terrain-following
Boussinesq system (2.1-2.2). The initial wave elevation profile is incoming from the
left and is given either by a Gaussian η0(z) = f(z) = exp(−z2/0.05) or by its spatial
derivative f ′(z) as displayed in Fig. 7.2. The corresponding initial velocity field is
calculated in order to generate only a right-propagating mode as presented in section
3. This is easily done by performing the inverse FFT of ǔ ≡ (ω/k)f̌ .

7.5.1. Previous numerical resuts in related configurations. In a previous
article by Fouque and Nachbin [15] TRR numerical experiments were conducted with
a weakly nonlinear shallow water system. In particular formula (6.10) (for the refo-
cused pulse shape in reflection) was numerically captured in the hyperbolic (β = 0)
case. The corresponding formula in [15] reads as (6.10) with KTRR, as given by
expression (6.13), with κ(β=0)(ω) = α(ω)/4. A weakly nonlinear example was also
presented showing that formula (6.10; β = 0) still holds as a good approximation. As
a consequence of these early results a complete nonlinear hyperbolic theory has been
recently developed by the present authors [13]. Subsequently in [14, 19] nonlinear
experiments were further extended and several numerical experiments for TRR were
presented for both linear and weakly nonlinear dispersive waves, including solitary
waves. Theory is not yet available for weakly dispersive, weakly nonlinear (solitary)
waves.

Connecting the above comments, and previous results, with the present paper
we recall that numerical results for the transmitted front (as at the end of section
5.2) were presented in Muñoz Grajales and Nachbin [18]. The present numerical code
captured quantitatively the composition of both kernels Kd and Kr, defined through
equation (5.6). One should keep in mind that the present stochastic O’Doherty-Anstey
formulation in transmission is more general than the deterministic theory given in
[18]. In part because it does not necessarily rely on β being small and also because
it displays the self-averaging property. Moreover, time reversal was not addressed in
[18].

Hence it is important to note that the transmission formula (5.6) plays an essential
role in expression (5.7) which converges asymptotically to the TRT formula (7.4). The
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Fig. 7.2. Initial wave elevation profiles considered in the experiments.

limiting form (7.1) of the frequency autocorrelation function was studied in section 7.1
and is characterized by the solution W̃0 of a transport equation as indicated in (7.2).
In contrast to the TRR problem it is not possible to derive a closed form expression
for the power spectral density ΛL

tr as mentioned at the end of section 7.2. One can
derive expansions or perform Monte Carlo simulations with the corresponding jump
process. On the other hand in the TRR problem this was made possible with the
large slab hypothesis (section 6.4), leading to a closed form expression for Λ∞ref . Thus
extracting quantitative information from expression (7.4) is a complex task, namely
due to the difficulty of computing ΛL

tr.
Our strategy for presenting numerical results that address the theoretical expres-

sion for TRT is as follows. In section 7.3 a dispersive regime was identified were TRT
can be easily checked: the homogeneous dispersive case. It has never been verified
that the oscillatory effect of the Airy kernel can be completely recompressed, even for
large values of β where we end up completely losing track of the initial pulse shape.
Phases are scrambled due to dispersion but recompressed (reorganized) through time
reversal. This will be shown below.

The next step is to add randomness. In forward transmission the dispersive
O’Doherty-Anstey attenuation mechanism has been quantitatively validated in [18],
for a specific realization. Note that these are two separately ways of addressing the two
main mechanisms encoded in ΛL

tr: the dispersive and the incoherent coda production
and recompression. Finally in the absence of a closed form expression for ΛL

tr we
proceed to qualitatively verifying the combined effect for the dispersive TRT in a
random environment.

7.5.2. New experiments for dispersive time reversal in transmission.
The new experiments of interest are in the TRT regime illustrating how, in particular,
it can be applied to source reconstruction (i.e., waveform inversion).

We first consider the homogeneous dispersive case discussed above. In this prob-
lem a Gaussian pulse will be gradually transformed into an Airy function (c.f. section
5.4 (b)). An oscillatory tail develops behind the wavefront due to dispersion, as dis-
played in Fig. 7.3. Time-reversion in transmission will recompress the oscillatory
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Fig. 7.3. Bottom graph: the complete transmitted wave elevation. The initial condition is given
by a dashed line. Dispersive propagation (β = 0.01) over a flat bottom. Top graph: Cut-off wave
elevation profile to be time-reversed and sent back towards the origin.

tail and the initial waveform is obtained as indicated in the sequence of Fig. 7.4. In
these experiments we used the Gaussian pulse (of approximately unit width) for the
right-propagating initial elevation together with its consistent (right-going) dispersive
velocity profile (β = 0.01). Both the wave elevation η and velocity u were recorded
for time-reversion. Hence no right-going mode was produced in the time-reversed
experiment.

Dispersion is then increased to a level where we will completely lose track of the
initial pulse shape. Let β = 0.1 and consider the derivative of a Gaussian for the
initial profile η0(z). In Fig. 7.5 we present the forward experiment at the top graph,
having only a right-going mode. Time evolves from bottom trace to the top. The
final trace (at the top) shows that we have completely lost track of the initial profile
highlighted at the bottom trace. Both η and u are recorded and time reversed. Hence
a left-propagating mode is generated for the time reversed experiment. In the bottom
graph of Fig. 7.5 we clearly see the full recompression as predicted in section 5.4.

Next we consider the case where we only record the wave elevation η. For the
time reversal experiment we re-emit this elevation field with an amplification by two.
The corresponding dynamics is presented in Fig. 7.6. We clearly see that, as recom-
pression takes place along the left-propagating mode, there is a small dispersive wave
propagating to the right. In Fig. 7.7(A) we have the “doubled” time-reversed profile
compared to the recorded profile. In Fig. 7.7(B) we see that the refocused pulse is
the same for both experiments considered with β = 0.1. The oscillatory coda seen in
Fig. 7.7(B) is due to the right-propagating mode in the “amplified” experiment.

We now repeat both TRT experiments in presence of a random topography ex-
pressed through the coefficient M(z). In these experiments both η and u are used in
the time-reversed data. In Fig. 7.8 a realization of the random topography is given
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Fig. 7.4. Time reversal in transmission (TRT) over a flat bottom. The initial profile was a
Gaussian at the origin. The time reversed profile is the trace at the bottom. Time evolves from
bottom to top at increments of time 3.6 units. Complete refocusing is observed at the top trace. The
dispersion level is β = 0.01.
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Fig. 7.5. Time reversal in transmission (TRT) over a flat bottom. The initial profile is a
derivative of a Gaussian at the origin (bottom trace of graph (A)). Time evolves from bottom to top.
Full recompression is observed in graph (B). The dispersion level has been increased to β = 0.1.
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Fig. 7.6. Time reversal in transmission (TRT) over a flat bottom. Time evolves from bottom
to top. The TR wave elevation (bottom trace) was amplified by a factor of two while the velocity
field u was not used for TR.
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Fig. 7.7. (A) Solid line: the recorded η; dashed line: the amplified η for time reversion. (B)
Refocused pulse for the amplified experiment of Fig. 7.6 (dashed line) and for the experiment in
Fig. 7.5 (solid line).

at the bottom of the graph together with the transmitted wave elevation which will
be time-reversed and sent back into the random medium. Note that to the left of the
(transmitted) oscillatory coda we have (small) incoherent radiation. At the correct
time the deterministic front, coda and random radiation recompress to give rise to
(a reduced version of) the original waveform, namely a Gaussian. The correct time
is exactly the time for the wave to reach the origin (t = 97.92). This was the time
up to which the time-reversed signal was originally recorded. Note however that the
resolution of the source location is rather poor. The three upper curves in Fig. 7.8
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Fig. 7.8. Time reversal in transmission (TRT) over a random topography. The fluctuation
level is 50% and the correlation length is ε = 0.1. The realization of the topography used for the
simulation is given at the bottom. Just above the topography we have the wave elevation profile
used for time reversion. Then time evolves from bottom to top at increments of 11.52 time units.
The expected refocusing time takes place at half the time increment used and therefore graphed
accordingly.

show almost the same waveform. This is of course an expected consequence of the
hyperbolicity of the equations.

Our final illustration of time reversal in transmission considers strong dispersive
effects. In the previous example we had β = 0.01. Now we consider a value ten
times larger. We now adopt the Gaussian’s derivative as the initial wave elevation
profile. This function has more energy on higher Fourier modes than the Gaussian.
Thus the effect of dispersion will be even more noticeable. In Fig. 7.9 we see the
topography realization at the very bottom of the figure. Above the topography we
find the transmitted wave elevation profile to be used in the time reversal experiment.
This profile was recorded after 95.4 time units. The corresponding velocity profile
is reversed. From bottom to top, the next three curves correspond to times t =
91.8, 95.4 (the expected refocusing time) and 99 time units. Only at time t = 95.4 we
have the original initial profile. At neighboring times we see the effect of dispersion.
At t = 91.8 we see that the oscillatory coda (here ahead of the left-propagating
pulse) is still being recompressed. At time t = 99 the pulse starts developing the
usual dispersive coda behind it. It is clear that the wave source was located at
the origin with a much higher accuracy than in the hyperbolic case. The source
location is a point in between coda recompression and coda generation. Note that
from the TR initial profile (at the bottom of Fig. 7.9) it is very difficult to predict
the source’s waveform, while TRT has naturally performed the waveform inversion.
We are currently working on the extension of these results and applications to higher
dimensions. A good numerical model and bathymetric information can be invaluable
tools for performing the time-reversed dynamics and waveform inversion.
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Fig. 7.9. Time reversal in transmission (TRT) over a random topography. The dispersion level
has been increase 10 times (β = 0.1). The trace at the bottom represents the time-reversed wave
elevation profile. The three following curves (from bottom to top) correspond to times t = 91.8, 95.4
(the expected refocusing time) and 99 time units. The topography’s fluctuation level is 50% and the
correlation length is ε = 0.1.

8. Conclusion. In this paper we have addressed the time reversal for waves
governed by a random dispersive Boussinesq system. We have demonstrated that
time reversal in a dispersive medium is effective in source location as opposed to
the hyperbolic case, because the source location is precisely the point between coda
recompression and coda generation. Our analysis also shows that dispersion enhances
localization effects in random medium. As a result time reversal focusing in reflection
(resp. in transmission) is more efficient (resp. less efficient) in the dispersive case
than in the hyperbolic case as indicated in Fig. 6.1(a). Extension to more general
dispersion relations is straightforward. The only but important hypothesis is that
the addressed dispersion relation k(ω) should be an odd function so that it preserves
time reversibility. These statements can also be generalized to some extent to three-
dimensional configurations. In 3D configurations the pulse refocuses in time and in
space [12, 6]. Accordingly, even in absence of dispersion the source location is possible
as it is given by the point where the refocused wave reaches its climax. However
we conjecture that dispersion improves the resolution in the source location as the
pulse spreading is enhanced when propagating away from the original source location.
Furthermore the spectral phase modulations are larger in presence of dispersion, so
that only close wavenumbers are phase-matched. We can thus expect that dispersion
enhances the statistical stability as well as the super-resolution in spatial refocusing
described in [3, 6, 23], and in time refocusing as described in this paper.
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