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Abstract. Time-reversal refocusing for waves propagating in inhomogeneous media have re-
cently been observed and studied experimentally in various contexts (ultrasound, underwater acous-
tics, . . . ); see, for instance, [M. Fink, Scientific American, November (1999), pp. 63–97]. Important
potential applications have been proposed in various fields, for instance in imaging or communica-
tion. However, the full mathematical analysis, meaning both modeling of the physical problem and
derivation of the time-reversal effect, is a deep and complex problem. Two cases that have been
considered in depth recently correspond to one-dimensional media and the parabolic approximation
regime where the backscattering is negligible. In this paper we give a complete analysis of time-
reversal of waves emanating from a point source and propagating in a randomly layered medium.
The wave transmitted through the random medium is recorded on a small time-reversal mirror and
sent back into the medium, time-reversed. Our analysis enables us to contrast the refocusing proper-
ties of a homogeneous medium and a random medium. We show that random medium fluctuations
actually enhance the spatial refocusing around the initial source position. We consider a regime
where the correlation length of the medium is much smaller than the pulse width, which itself is
much smaller than the distance of propagation. We derive asymptotic formulas for the refocused
pulse which we interpret in terms of an enhanced effective aperture. This interpretation is, in fact,
comparable to the superresolution effect obtained in the other extreme regime corresponding to the
parabolic approximation. However, as we discuss, the mechanism that generates the superresolution
is very different in these two extreme situations.
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1. Introduction. In this paper we present a mathematical analysis of time-
reversal in the case with waves propagating through randomly layered media. The
one-dimensional case where incoherent waves are time-reversed and sent back into
the medium is well understood in the regime of separation of scales; we refer to
[10, 12, 13, 14, 18, 22]. In this paper we discuss the layered case where waves prop-
agate from a point source in three spatial dimensions. In section 1.2 we describe
in detail the physical problem that we will study, the time-reversal experiment for
acoustic waves in randomly layered media. We summarize the important separation
of scales assumptions that we make in section 1.3 following [1]. In section 2 we derive
an integral representation for the transmitted wave in terms of the transmission coef-
ficients associated with the different wave modes. We briefly review in section 3 the
description of the transmitted coherent field, known as the O’Doherty–Anstey theory
[20], studied in [8, 9, 16, 17, 19, 23]. Next, we describe the time-reversed and reflected
wave and derive the superresolution effect that enhances the refocusing obtained in a
homogeneous medium which is constrained by the diffraction limit. Our precise anal-
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ysis enables us to explain the mechanism which produces this enhanced aperture and
how it differs from the one studied in the parabolic approximation regime in [3, 5, 21].
We discuss the comparison between these mechanisms in section 5.

1.1. Acoustic waves. We consider linear acoustic waves propagating in a three-
dimensional medium.

The equations for the velocity u and pressure p are

ρ
∂u

∂t
+∇p = 0,(1.1)

1

K

∂p

∂t
+∇ · u = 0,

with ρ being the density and K the bulk modulus. These two equations correspond,
respectively, to conservation of momentum and mass. In the model problem that we
consider, the medium parameters are heterogeneous in the slab 0 < z < L. We aim
at describing waves propagating in a strongly heterogeneous medium like they do in
the earth’s crust. The fluctuations in the medium are then very complicated and we
cannot expect to know them pointwise; however, we might be able to describe them
statistically. Thus, we model the fluctuations of the medium in terms of a centered
stochastic process ν which satisfies some mixing conditions that are needed in the
asymptotic analysis and which are reviewed in, for instance, [1, 7]. The typical exam-
ple of such a process satisfying these mixing conditions will be an ergodic Markovian
process that decorrelates exponentially fast:

1

K(x, z)
=

1

K(z)
=

{
1

K

(
1 + ν( z

ε2 )
)

for z ∈ [0, L],
1

K
for z ∈ (−∞, 0) ∪ (L,∞),

ρ(x, z) = ρ̄ for all (x, z).

Below we show how the statistics of the propagating wave field derives from the
statistics of ν. Observe that we model the medium as being layered or laminated;
it varies only in the “depth” direction z. The random medium fluctuations are not
small; they are O(1), and the fluctuations take place on the microscale, conveniently
denoted by ε2, where ε is a small parameter. In a number of physical problems the
fluctuations in density are small compared to the fluctuations in the bulk modulus
and for simplicity we take here the density to be constant. The general situation with
fluctuations also in the density can be handled using a modification of the approach
presented below. A point source is located in the homogeneous halfspace z < 0; we
will give it explicitly in section 2.

We are interested in how the medium fluctuations ν affect the propagating pulse.
Consider first the case with a very long wave length for the propagating pulse, that
is, a wave length on the order of the propagation distance of size L.

Effective medium theory as discussed in [1] shows that then, to leading order,
the wave propagates as if it were in an averaged or effective medium. The effective
medium corresponds to replacing the reciprocal of the bulk modulus by its average
value, 1/K, and also the density by its average value, which in this case is the constant
density ρ. Thus, we have centered the random medium fluctuations such that the pulse
impinging from the halfspace z < 0 propagates as in a homogeneous medium and it
is not affected by the random fluctuations ν. The parameters of the homogeneous
halfspace matches those of the effective medium. However, if the wave length is short
compared to the traveling distance, then the random fluctuations ν will strongly
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ε
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L
Fig. 1.1. Setup.

affect the wave; this is the regime we consider here. More precisely, we carry out our
asymptotic analysis in the regime where the characteristic wavelength is O(ε), which
is long compared to ε2, the spatial scale of the random medium fluctuations which
are short compared to the distance of propagation, L, that we take to be O(1).

1.2. Time-reversal model problem. We describe the time-reversal model
problem that we will analyze. The problem is illustrated in Figure 1.1 and involves
the following steps:

1. A point source is located in the halfspace z < 0 and generates an acoustic
pulse that is impinging on the heterogeneous slab 0 < z < L. The spatial
width of the wave front that emanates from the source is small and is O(ε).
The wave field is subject to multiple scattering before it hits the time-reversal
mirror (TRM), where it is recorded within a specific time window. Note that
the TRM does not act as a usual mirror or strong reflector, but in a way that
we now explain. We choose a narrow time window, of width O(ε), located
such that it records the wave front when it arrives at the TRM. We show
below that this arrival time in the random case is approximately given by the
arrival time in the effective medium. The spatial extent of the TRM in the
transverse coordinates x is also chosen to be O(ε).

2. The pressure pulse that is captured in the given time window is reversed
in time before it is reemitted from the mirror and propagates toward the
original source point. This means that the part of the signal that arrives last
is reemitted first.

3. Finally, we observe the wave front when it arrives back at the hyperplane
z = 0 containing the original source point. The main issue we want to
address is the spatial support of this repropagated wave. If the TRM had
recorded the transmitted wave for a long time and on a large spatial segment,
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then the repropagated wave would be tightly focused at the original source
point. Here, we consider the case with a small window, a small aperture,
(ε/L), and we examine whether and how the repropagated wave focuses at
the original source point. A key aspect in algorithms exploiting the time-
reversal technique is exactly such tight refocusing of the wave energy.

1.3. Summary of scales. Before we start the analysis of the problem we sum-
marize the important scaling assumptions, and we comment on the physical setup
and on the relation to the concept of mean-free path.

• The distance from the source point to the mirror is L = O(1).
• The magnitude of the random medium fluctuations is not small; it is O(1).
• The spatial scale at which the medium fluctuates is very small; it is O(ε2).
• The central wave length of the signal is small; it is O(ε). Note that this is a
scale in between the macroscale, O(L), and the microscale, O(ε2).

• The TRM is supported on the scale O(ε) in space and captures the wave front
in a short time interval of width O(ε).

The concept of mean-free path is relevant in the regime of radiative transport. This is
a regime where the fluctuations in the medium are weak and the wave propagates over
long distances. The mean-free path length characterizes the importance of multiple
scattering and determines the energy envelope. In this paper we are in the regime
of localization since we consider strongly contrasted media with a special geometry,
namely the one-dimensional layered structure. The mean-free path is not relevant
here. This regime is characterized by strong multiple scattering, and coda waves are
not accurately described by the radiative transport theory. The important length
scale parameter is the frequency dependent localization length which is given by

c̄2

(ε2γ)(ω/ε)2
=

c̄2

γω2
,

with γ defined in (3.6) below and c̄ =
√
K̄/ρ̄. This length scale gives the exponential

rate of decay of the transmitted energy at the high frequency ω/ε, as can be seen
from (3.7). For more details on physical interpretations, and additional references, we
refer the reader to the review article [15]. We also refer the reader to [2] for recent
results on time-reversal in the regime of radiative transport and to [6] for applications
to imaging.

2. The transmitted signal.

2.1. Plane wave representation. The analysis of the wave propagation prob-
lem described above is greatly simplified by the fact that the medium varies only in
the depth z-direction. It means that we can decompose the wave field into plane wave
components and analyze the propagation of each of these separately. Consider first a
plane wave packet that is moving in the z-direction in the homogeneous or effective
medium with speed c̄ and a characteristic wave length O(ε); its pressure, denoted by
phom, has the Fourier domain integral representation

phom(t,x, z) = f

(
t− z/c̄

ε

)
=

1

2π

∫
e−iω(t−z/c̄)/εf̂(ω)dω

=
1

2π

∫
e−iωt/εf̂(ω)eiωz/(εc̄)dω,
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where the Fourier transform of the pulse shape is

f̂(ω) =

∫
eiωsf(s)ds.

Consider next a plane wave that, relative to the spatial coordinates (x1, x2, z), is
moving in the direction of the unit vector:

(c̄k,
√
1− κ2c̄2),

with the lateral slowness vector being

k = (k1, k2),

and we denote

κ2 = k2
1 + k2

2.(2.1)

We assume below a directed point source such that there are no evanescent waves
propagating; see (2.12). In other words we deal only with real wave numbers. This
oblique plane wave packet, propagating in the homogeneous medium, has the repre-
sentation

1

2π

∫
e−iω(t−k·x)/εf̂(ω)eiωz/(εc̄(κ))dω,(2.2)

with the mode dependent speed in the z-direction being

c̄(κ) =
c̄√

1− κ2c̄2
.(2.3)

We now exploit the fact that the medium does not depend on the transversal space
variable x and decompose the problem into a family of problems involving such wave
modes. First we eliminate the horizontal components of the velocity from (1.1):

ρ̄
∂u

∂t
+
∂p

∂z
= 0,(2.4)

1

K(z)

∂2p

∂t2
− 1

ρ̄

(
∂2p

∂x2
1

+
∂2p

∂x2
2

)
+

∂2u

∂z∂t
= 0,(2.5)

with u being the velocity component in the z-direction. It is convenient to take a
joint Fourier transform in time and the lateral spatial dimensions (x1, x2). This joint
transform decomposes the waves into plane wave modes according to (2.2):

ûε(ω,k, z) =

∫ ∫ ∫
ei

ω
ε (t−k·x)u(t,x, z) dt dx,

p̂ε(ω,k, z) =

∫ ∫ ∫
ei

ω
ε (t−k·x)p(t,x, z) dt dx.

The inverse transform then becomes, for instance, for the pressure

pε(t,x, z) =
1

(2πε)3

∫ ∫ ∫
e−iω

ε (t−k·x)p̂ε(ω,k, z)ω2dkdω.
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Observe the presence of the factor ω2 in this Fourier inverse due to our specific choice
of Fourier variables. From (2.4) we obtain

− iω

ε
ρ̄ûε +

∂p̂ε

∂z
= 0,

iω

ε

(
1

K(z)
− κ2

ρ̄

)
p̂ε − ∂ûε

∂z
= 0

after factoring out an iω in the second equation. Below, in (2.12), we assume that the
source is given such that we need only to consider nonevanescent modes corresponding
to lateral slownesses (defined in (2.1)) satisfying κ < C < 1/c̄ for some constant C.
The speed of the modes are given by (2.3), and the travel time for mode k from the
origin to depth z depends only on the lateral slowness κ = |k|; it is

τ(z, k) = z/c̄(κ).

Similarly, we define now the mode acoustic impedance by

Ī(κ) = ρ̄c̄(κ).

With these definitions the equations for p̂ε and ûε can be written in the form

− iω

ε
ρ̄ûε +

∂p̂ε

∂z
= 0,(2.6)

− iω

ε

1

ρ̄c̄(κ)2

(
1 +

c̄(κ)2

c̄2
ν
( z
ε2

))
p̂ε +

∂ûε

∂z
= 0.

This shows that mode by mode the problem is a one-dimensional wave propagation
problem. In fact, with κ fixed, this corresponds to a one-dimensional wave propagation
problem with density ρ̄ and with the random mode dependent bulk modulus given by

K−1
κ =

1

ρ̄c̄(κ)2

(
1 +

c̄(κ)2

c̄2
ν
( z
ε2

))
.(2.7)

This is seen by performing a Fourier transform in time of the one-dimensional version
of (1.1). We have therefore simplified the problem to a family of one-dimensional
wave propagation problems.

2.2. One-dimensional mode problems. We now generalize the decomposi-
tion into right and left going waves to the nonhomogeneous case. We decompose the
solution of (2.6) into right and left going wave components for each plane wave mode
by setting

p̂ε =

√
Ī(κ)

2

(
ǎεeiωz/εc̄(κ) − b̌εe−iωz/εc̄(κ)

)
,(2.8)

ûε =
1

2
√
Ī(κ)

(
ǎεeiωz/εc̄(κ) + b̌εe−iωz/εc̄(κ)

)
,(2.9)

where ǎε and b̌ε are unknown functions of ω, k, and z. Outside the random slab this
is an exact decomposition in the sense that these functions do not vary with z. We
shall retain this decomposition also in the slab z ∈ (0, L) since it provides a centering
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with respect to the effective medium wave speed. We assume that a wave is impinging
on the random slab from the left, giving the following boundary condition at z = 0:

ǎε(ω,k, 0) = ε2φ̌(ω,k).(2.10)

The multiplicative factor ε2 derives from the fact that this is the particular scaling
of the source magnitude that makes our quantity of interest O(1). Since the problem
is linear this choice is, however, not important. We assume, moreover, that there is
no energy coming in from the homogeneous halfspace z > L, which gives the second
boundary condition at z = L:

b̌ε(ω,k, L) = 0.(2.11)

The first condition gives in the Fourier domain the waves coming in from the homoge-
neous left halfspace z < 0. The particular form of φ̌ depends on the particular choice
of the physical source. For instance, if φ̌ is given by a pointmass at the mode k0, then
the boundary condition corresponds to a time pulse oblique plane wave as above.
The problem then reduces to a single one-dimensional problem of the type (2.6). In
the following we consider more general functions φ̌ which correspond to directed point
sources; however, the particular form of φ̌ is not important in our analysis. We assume
that the support of φ̌ satisfies

φ̌(ω,k) = 0 for κ2 = |k|2 > cmin,(2.12)

with

cmin <
ρ̄

κ̄
(1−max(|ν|)).

Note that under this assumption there are no evanescent waves.
When we substitute the expressions (2.8) and (2.9) in (2.6) we get the following

equations for the centered and transformed waves:

d

dz

[
ǎ

b̌

]
=

iω

2εc̄(κ)
νκ

( z
ε2

)[
1 −e−2iωz/εc̄

e+2iωz/εc̄ −1

] [
ǎ

b̌

]
,(2.13)

where we defined

νκ

( z
ε2

)
=

(
c̄(κ)

c̄

)2

ν
( z
ε2

)
.

Since the problem that we consider is a two point boundary value problem, rather
than an initial value problem, we now introduce the propagators that satisfy

d

dz
Pε

(ω,κ)(0, z) =
1

ε
H(ω,κ)

(z
ε
, νκ

( z
ε2

))
Pε

ω,κ(0, z),(2.14)

Pε
(ω,κ)(0, 0) = I.

Observe that the propagator depends on the mode k only through κ =
√
k2
1 + k2

2.
The matrix H depends on the fast variable z/ε through the phases and on the even
faster variable z/ε2 through the randomness ν:

H(ω,κ)(z, νκ) =
iω

2c̄(κ)
νκ

[
1 −e−2iωz/c̄(κ)

e+2iωz/c̄(κ) −1

]
.
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From (2.14) it follows that we can express the propagator in the form

Pω,κ(0, L) =

[
αε

(ω,κ)(0, L) βε
(ω,κ)(0, L)

βε
(ω,κ)(0, L) αε

(ω,κ)(0, L)

]
.

Since the trace of H is zero it also follows that

|αε
(ω,κ)|2 − |βε

(ω,κ)|2 = 1.(2.15)

The transmitted right going wave is defined in terms of the harmonic amplitude ǎ
which solves

P(ω,κ)(0, L)

[
ε2φ̌(ω,k)

b̌(ω,k, 0)

]
=

[
ǎ(ω,k, L)

0

]
;

therefore

ǎ(ω,k, L) =
ε2φ̌(ω,k)

αε
(ω,κ)(0, L)

.(2.16)

Using (2.15) we derive the important energy conservation relation

|ǎ(ω,k, L)|2 + |b̌(ω,k, 0)|2 = |ε2φ̌(ω,k)|2,(2.17)

which in particular implies that the transmission coefficient 1/αε
(ω,κ)(0, L) is uniformly

bounded by one.

2.3. Integral representation for the transmitted wave. We now look at
the right propagating transmitted wave within a time window centered at time t0 and
on the ε scale, that is, A(t0 + εσ,x, L). By Fourier inverse this quantity is given by

A(t0 + εσ,x, L)(2.18)

=
1

(2πε)3

∫ ∫ ∫
e−iω

ε (t0+εσ−k·x−L/c̄(κ))ǎ(ω,k, L)ω2dkdω.

The expression (2.16) for the transmitted front wave mode gives then the following
integral representation for the transmitted right-propagated wave component:

A(t0 + εσ,x, L)(2.19)

=
1

(2πε)3

∫ ∫ ∫
e−iω

ε (t0+εσ−k·x−L/c̄(κ)) 1

αε
(ω,κ)(0, L)

(ε2φ̌(ω,k))ω2dkdω.

Note that the corresponding expression for the pressure follows upon a scaling by√
Ī(κ)/2, as can be easily seen from (2.8).

3. Review of O’Doherty–Anstey theory. Our objective is to understand
time-reversal of transmitted waves. It is therefore essential to have a precise descrip-
tion of the transmitted wave front. We review here the theory that describes this
front. The main result, the O’Doherty–Anstey formula, is presented in section 3.3.
Convergence of finite-dimensional distributions for the front wave is derived in section
3.1 using a moment argument as detailed in [9].
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3.1. Characterization of moments. From the integral expression (2.19) we
see that the transmission coefficients defined as 1/αε

(ω,κ)(0, L) determine the trans-

mitted wave field. From the energy-conservation (2.17) it follows that the modulus
of this coefficient is bounded by one. It is important to note that the distribution of
the wave in time and space depends on the joint distribution of the transformed wave
over all frequencies ω and lateral wave vectors k. We next illustrate that knowledge
of the joint moments of the transmitted wave for all finite combinations of different
frequencies and wave vectors is enough to characterize the distribution of the trans-
mitted wave in time and space. This follows from the fact that the expectations in
(3.1) have arguments that involve a finite number of frequencies and wave vectors. A
convenient way to characterize the finite-dimensional distributions of the scalar wave
is to compute the joint moments of order m1, . . . ,mn:

E[A(t0,1 + εσ1,x1, L)
m1 · · ·A(t0,n + εσn,xn, L)

mn ],

which can be written in an integral form with respect to the variables ωj,l,kj,l, 1 ≤
l ≤ n, 1 ≤ j ≤ ml:

1

(2πε)(3m)

∫∫
e
−i
∑

ωj,l

(
σl+

θj,l
ε

)
E

[∏ 1

αε
(ωj,l,κj,l)

(0, L)

]
(3.1)

×
(
ε2m

∏
φ̌(ωj,l,kj,l)

)∏
ω2
j,ldkj,ldωj,l,

where we defined

m =

n∑
l=1

ml,

θj,l = θ(t0,l,kj,l,xl) = t0,l − kj,l · xl − L/c̄(κj,l),

and the sum in the exponent and also the products are taken over all the distinct
frequencies and wave vectors, that is, over l and j, such that

1 ≤ l ≤ n, 1 ≤ j ≤ ml.

Therefore, we are led to study the joint distribution of the transmission coefficients

1

αε
(ωj ,κj)

(0, L)
= T ε

(ωj ,κj)
(0, L)

for a finite number of frequencies and wave vectors. We now relabel these by ω1, . . . , ωm

and k1, . . . ,km. First, consider the situation with the phase θj,l = 0. Then, if we can
characterize the limits

lim
ε→0

E

[
T ε

(ω1,κ1)
(0, L) · · ·T ε

(ωm,κm)(0, L)
]

(3.2)

of all these finite-dimensional problems, we would have characterized all the finite-
dimensional distributions of the transmitted wave front in space and time. It is shown
in [9] for the one-dimensional case and in [8] for the layered case that the limit (3.2)
is

E

[
T̃(ω1,κ1)(0, L) · · · T̃(ωm,κm)(0, L)

]
,(3.3)
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where the coefficients T̃ ’s are solutions of the system of stochastic differential equa-
tions:

dT̃(ωj ,κj) = −ω2
j

γκj

2c̄(κj)2
T̃(ωj ,κj)dz + iωj

√
γκj

c̄(κj)
√
2
T̃(ωj ,κj)dW (z)(3.4)

driven by a single standard Brownian motion W (z) and where the coefficient γκ is
given by

γκ =

∫ ∞

0

E[νκ(0)νκ(s)]ds =

(
c̄(κ)

c̄

)4

γ(3.5)

and

γ =

∫ ∞

0

E[ν(0)ν(s)]ds.(3.6)

Physically, this means that if we center the transmission coefficient with respect to
the random phase induced by the Brownian motion W , then the wave pulse is, to
leading order, deterministic. The technique for deriving this result entails writing an
expression for the multidimensional propagator that is associated with the frequencies
and wave vectors (ωj ,kj). It satisfies an equation that generalizes the one in (2.14) for
a single ω,k. Using a diffusion approximation result one can show that this multidi-
mensional propagator converges in distribution to the solution of a multidimensional
linear stochastic differential equation. Using Ito calculus one then derives stochas-
tic differential equations that characterize the limiting transmission coefficients. One
then takes expectations of the products of such coefficients and deduces that the limit
is given by (3.3). Equation (3.4) admits the following explicit solution:

T̃(ω,κ)(0, L) = exp

(
iω

√
γκ

c̄(κ)
√
2
W (L)− ω2 γκ

4c̄(κ)2
L

)
,(3.7)

as can be easily checked by applying Ito’s formula. Therefore, if we substitute 1/αε

for T̃ in (2.19), we obtain a characterization of the distribution for the wave front.
This substitution leads to the correct asymptotic limit expression for the front also
in the case with a fast phase, that is, when θj,l is nonzero. The small ε limit for the
front is then obtained via a subsequent stationary phase argument [8, 23], which gives
the limit

ã(σ,x, L) := (sp) lim
ε→0

A(t0 + εσ,x, L)(3.8)

= (sp) lim
ε→0

1

(2π)3ε

∫ ∫ ∫
e−iωσe−iω

θ(t0,k,x)

ε T̃(ω,κ)(0, L)φ̌(ω,k)ω
2dkdω.

Observe that this integral expression has the exact scaling required for computing a
two-dimensional stationary phase limit, and we compute this limit in the next section.

3.2. Stationary phase. The main contribution to the integral expression (3.8)
occurs at the stationary point that solves

∇kθ =


 −x1 − ∂

∂k1

(
L

c̄(κ)

)
−x2 − ∂

∂k2

(
L

c̄(κ)

)

 =

[ −x1 + Lk1c̄(κ)
−x2 + Lk2c̄(κ)

]
= 0,
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which follows from equation (8.4.44) in [4]. It follows that the stationary lateral wave
vector, ksp, solves

ksp =
x

c̄(κsp)L
=

x
√
1− c̄κ2

sp

c̄L
,(3.9)

where we have used (2.3) and defined

κ2
sp = k2

sp,1 + k2
sp,2.

Recall that under assumption (2.12) the wave numbers are real. Solving (3.9) for κ2
sp

we find

c̄2κ2
sp =

|x|2
|x|2 + L2

.

We now substitute this explicit expression for c̄2κ2
sp into (3.9) to find the stationary

point

ksp(x) =
x

c̄
√|x|2 + L2

.

We next substitute κ2
sp in (3.5) and obtain

γκsp
=


 1√

1− κ2
spc̄

2




4

γ =

(
1 +

|x|2
L2

)2

γ.

Finally, the value of the phase at the stationary point is given by

θ(t0,ksp,x) = t0 −
√|x|2 + L2

c̄
,

and we choose t0 to cancel it:

t0 =

√|x|2 + L2

c̄
.

This corresponds to choosing t0 to be the travel time from the source point at the
origin to the point of observation (x, L) under the constant effective medium sound
speed c̄. We also have

γκsp

c̄(κsp)2
=

γ

c̄2

(
1 +

|x|2
L2

)
,

and upon substitution in (3.7) we find

T̃(ω,κsp)(0, L) = exp

(
iω

√
γ

c̄
√
2

√
1 +

|x|2
L2

W (L)− ω2 γ

4c̄2

(
1 +

|x|2
L2

)
L

)
.
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3.3. O’Doherty–Anstey formula. We have used the diffusion approximation
limit to obtain a joint description of the plane wave modes, and we next derive a
simple explicit formula for the limit of the transmitted wave using the method of
stationary phase. Applying the stationary phase result to (3.8) we find

ã(σ,x, L)

=
1

8π2c̄2
√|x|2 + L2

∫
e−iωσe

iω
√

γ

c̄
√

2

√
1+

|x|2
L2 W (L)

e
−ω2 γ

4c̄2

(
1+

|x|2
L2

)
L
iωφ̌(ω,ksp)dω.

The corresponding limit expression for the transmitted front ã0 in a constant medium
is obtained by evaluating the above expression for γ = 0; we find

ã0(σ,x, L) =
1

8π2c̄2
√|x|2 + L2

∫
e−iωσiωφ̌(ω,ksp)dω.

This, then gives the following.
Theorem 3.1. In probability distribution the following characterization of the

transmitted wave process holds:

lim
ε→0

A

(√|x|2 + L2

c̄
+ εσ,x, L

)
= ã(σ,x, L),

where

ã(σ,x, L) =
[
ã0(·,x, L) ∗ ND(L,x)

] (
σ − θ(L,x)

)
,

and we denote

D2
(L,x) =

γ

2c̄2

(
1 +

|x|2
L2

)
L,(3.10)

θ(L,x) =

√
γ
(
1 + |x|2

L2

)
c̄
√
2

W (L),(3.11)

ND(s) =
1√
2πD

e−s2/2D2

.

This result follows from the computations presented in sections 3.1 and 3.2 in
the same manner as in [9] (one-dimensional case) and [8] (stationary phase limit).
Observe that for L fixed only the random variable W (L) is needed to characterize the
probability distribution of the random field ã(σ,x, L). Recall thatW (L) is a Gaussian
random variable with mean zero and variance L. Note therefore that the shape of the
front wave is given by the deterministic quantity

ã0(·,x, L) ∗ ND(L,x)
.

This corresponds to a “diffusion” in time or a smearing of the transmitted wave
process via a convolution with the Gaussian function. This is often referred to as
stabilization of the front and has also been obtained in [17, 23]. In the derivation
presented there the shift by the Brownian motion W (L) is handled by centering the
front with respect to a random travel time. Thus, the front is observed in a frame
that is random and depends on the particular realization of the random medium.
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4. Time-reversal of transmitted front. We have discussed and characterized
precisely the transmitted wave front, and we can now start the mathematical analysis
of the time-reversal problem that we presented in detail in section 1.2. The time-
reversal mirror (TRM) is defined by its support function in time and space. The time
window on the ε scale is denoted by G1(σ) and the spatial extent in the ε scale by
G2(x

′),

G(σ,x′) = G1(σ)G2(x
′).

This means that the signal recorded at the TRM is given by

y(σ,x′) = A(t′0 + εσ, εx′, L)G1(σ)G2(x
′),

where we have evaluated the transmitted field on the ε scale in time and space.
Observe that this corresponds to looking at the transmitted signal on the microscale or
ε scale in a window centered at the time t0 and around the position (x = 0, z = L). We
find below that the appropriate choice for t′0 is simply t′0 = L/c̄. This is a consequence
of locating the TRM in an ε-neighborhood of x = 0. In practice the TRM will be
located in a neighborhood of some offset x0; this introduces a modification that we
discuss in section 4.6.

4.1. Time-reversed signal at the mirror. The time-reversed signal at the
mirror is on the ε scale given by

ψ(σ,x′) = y(−σ,x′) = A(t′0 − εσ, εx′, L)G1(−σ)G2(x
′).

In order to obtain a convenient integral expression for the wave field propagated back
in the medium and evaluated at the original source plane we compute the specific
Fourier transform of the new source defined by ψ:

ψ̂ε(ω,k) =

∫ ∫ ∫
eiω(σ−k·x′)A(t′0 − εσ, εx′, L)G1(−σ)G2(x

′)dσdx′

=

∫ ∫ ∫
eiω(σ−k·x′)

{
1

(2π)3ε

∫ ∫ ∫
e−iω′(σ+k′·x′)T ε

(ω′,κ′)(0, L)

× φ̌(ω′,k′)ei
ω′
ε (t

′
0−L/c̄(κ′))ω′2dk′dω′

}
G1(−σ)G2(x

′)dσdx′

=
1

(2π)3ε

∫ ∫ ∫
T ε

(ω′,κ′)(0, L) φ̌(ω
′,k′)

×
{∫

ei(ω
′−ω)(−σ)G1(−σ)dσ

∫ ∫
e−i(ωk+ω′k′)·x′

G2(x
′)dx′

}

× ei
ω′
ε (t

′
0−L/c̄(κ′))ω′2dk′dω′

=
1

(2π)3ε

∫ ∫ ∫
T ε

(ω′,κ′)(0, L) φ̌(ω
′,k′)

× Ĝ1(ω − ω′)
∫ ∫

e−i(ωk+ω′k′)·x′
G2(x

′)dx′ei
ω′
ε (t

′
0−L/c̄(κ′))ω′2dk′dω′,(4.1)

where we used the fact that A is real.

4.2. The diffracted field. We observe the backpropagated or diffracted field
at the plane z = 0, at the offset x, and at the time t1 + εσ. This is our quantity
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of interest, which we denote by Sε
L, and it is obtained by applying (2.19) to the new

source ψ̂ε given by (4.1):

Sε
L(t1 + εσ,x) =

1

(2πε)3

∫ ∫ ∫
e−iω

ε (t1+εσ−k·x−L/c̄(κ))T ε
(ω,κ)(L, 0)

×
{
ε2ψ̂ε(ω,k)

}
ω2dkdω,

where T ε
(ω,κ)(L, 0) is the transmission coefficient from z = L to z = 0. Observe that we

rescale the new source by the multiplicative factor ε2 as in (2.19). This scaling takes
into account the size of the TRM and is chosen such that our quantity of interest
becomes O(1). Using the definition of the propagator in (2.14) we find that the
transmission coefficient T ε

(ω,κ)(L, 0) satisfies

P(ω,κ)(0, L)

[
0

T ε
(ω,κ)(L, 0)

]
=

[
Rε

(ω,κ)(L, 0)

1

]

and therefore is given by

T ε
(ω,κ)(L, 0) =

1

αε
ω,κ(0, L)

= T ε
(ω,κ)(0, L).

After replacing ψ̂ε(ω,k) by its integral representation (4.1) we find

Sε
L(t1 + εσ,x)

=
1

(2π)6ε2

∫∫
e−iωσe−iω

ε (t1−k·x−L/c̄(κ))ei
ω
ε (k·x)ei

ω′
ε (t

′
0−L/c̄(κ′))

× φ̌(ω′,k′) Ĝ1(ω − ω′) T ε
(ω′,κ′)(0, L) T

ε
(ω,κ)(0, L)

×
{∫ ∫

e−i(ωk+ω′k′)·x′
G2(x

′)dx′
}
ω′2ω2dk′dω′ dkdω.

A moment argument similar to the one given in section 3.1 shows that the diffusion
approximation limit is obtained by replacing the transmission coefficients T ε by their
corresponding coefficients T̃ given explicitly in (3.7). It then remains to apply the
stationary phase result to

lim
ε→0

Sε
L(t1 + εσ,x)

= (sp) lim
ε→0

1

(2π)6ε2

∫∫
e−iωσe−iω

ε (t1−k·x−L/c̄(κ))ei
ω′
ε (t

′
0−L/c̄(κ′))

× φ̌(ω′,k′) Ĝ1(ω − ω′)e−iω′
√

γ′
κ

c̄(κ′)√2
W (L)−ω′2 γ

κ′
4c̄(κ′)2 L

e
iω

√
γκ

c̄(κ)
√

2
W (L)−ω2 γκ

4c̄(κ)2
L

×
{∫ ∫

e−i(ωk+ω′k′)·x′
G2(x

′)dx′
}
ω′2ω2dk′dω′ dkdω.

In the same manner as in section 3.2 we can now apply the stationary phase theorem
with respect to the two phases t1−k ·x−L/c̄(κ) and t′0−L/c̄(κ′). They give, respec-
tively, the stationary points ksp(x) = x/c̄

√|x|2 + L2 and κ′sp = 0. The corresponding

“stationary phase times” are t(1,sp) =
√|x|2 + L2/c̄ and t(0,sp) = L/c̄. We denote the

limiting field by sL and obtain the main result.
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Theorem 4.1.

sL(σ,x) := lim
ε→0

Sε
L(t(1,sp) + εσ,x)(4.2)

=
−1

16π4c̄4L
√|x|2 + L2

∫ ∫
e−iωσφ̌(ω′,0) Ĝ1(ω − ω′)e−i(ω′θ(L,0)−ωθ(L,x))

× e−ω′2D2
(L,0)e−ω2D2

(L,x)Ĝ2(−ωksp)ωω
′dωdω′,

with the quantities D2
L and θ defined in (3.10) and (3.11).

4.3. Focusing functionals. If the TRM had covered the whole plane z = L,
then the backpropagated wave would refocus tightly at the original source point;
that is, sL(σ,x) would be supported near x = 0. If the mirror is very small, as in
our scaling, the refocusing becomes poor in the deterministic case. The fascinating
phenomenon that we discuss next is that the random medium fluctuations give a
refocused pulse also in the case with a very small aperture or spatial support of the
TRM.

We now write the diffracted field (4.2) in terms of an integral of the initial time
pulse by introducing a focusing functional H(s,x;σ, L).

Definition 4.2. We define

H(s,x;σ, L) :=
(−1)

4π2

∫ ∫
e−i(ω′s+ωσ)Ĝ1(ω − ω′)Ĝ2(−ωksp)(4.3)

×
{
e−i(ω′θ(L,0)−ωθ(L,x))e−ω′2D2

(L,0)e−ω2D2
(L,x)

}
ωω′dωdω′,

with C = 1/(4π2c̄4L) and r2 = |x|2 + L2.
Using this definition we obtain the following representation of the time-reversed,

repropagated, and refocused pulse.
Lemma 4.3. The refocused field is given by

sL(σ,x) =
C

r

∫
φ (s)H(s,x;σ, L)ds,

where the time pulse φ is given by

φ (s) =
1

2π

∫
φ̌(ω′,0)eiω

′sds.

In the deterministic case the term in the curly brackets in (4.3) is identically equal
to one. In the random case this term plays a crucial role; it will enhance the decay in
x of the focusing functional H. Note that if we denote by H0 the focusing functional
in the deterministic case by

H0(s,x;σ, L) =
−1

(2π)2

∫ ∫
e−i(ω′s+ωσ)Ĝ1(ω − ω′)Ĝ2(−ωksp)ωω

′dωdω′,

then in the random case it is given by

H(s,x;σ, L) = H0(s+ θ(L,0),x;σ − θ(L,x)), L) ∗s ND(L,0)
∗σ ND(L,x)

,

where we differentiate between the commuting convolutions with respect to s and σ.
Therefore, the effect of the randomness in the medium can be described as introducing
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a new or effective focusing functional. It is obtained from the one in the deterministic
case by convolution with deterministic Gaussian functions with respect to the time
arguments and random shifts θ(L,x) and θ(L,0) in these arguments. As we show below,
the fact that one of the Gaussian functions in the convolution has an |x| dependent
width will give the focusing enhancement. By making the change of variables ω̃ =
ω − ω′ and integrating with respect to ω̃ we find

H(s,x;σ, L) =
1

2π

∫
e−iω(σ+s)

[−iG′
1(s+ θ(L,0))− ωG1(s+ θ(L,0))

]
Ĝ2(−ωksp)

×
{
e−iω(θ(L,0)−θ(L,x))e−ω2D2

(L,x)

}
ωdω ∗σ ND(L,0)

.

For simplicity we assume here that the mirror function G2(x) is rotationally invariant
and relabel it G2(|x|). When we then carry out the ω integration we obtain the
following.

Theorem 4.4. The focusing functional is given by

H(s,x;σ, L) =

[
G′

1(s+ θ(L,0))
∂

∂s
+G1(s+ θ(L,0))

∂2

∂s2

]

×
∫
G2

(−v
κsp

)
1

κsp
ND(L,x)

(s+ σ + θ(L,0) − θ(L,x) − v)dv ∗σ ND(L,0)
,

and the random fluctuations in the medium correspond to the following:
(i) an effective enhancement of the spatial support of G2 through convolution with a

Gaussian with variance given by (3.10):

D2
(L,x) =

γ

2c̄2

(
1 +

|x|2
L2

)
L;

(ii) a random displacement of the TRM given by

θ̄(L,x) := θ(L,x) − θ(L,0) =

√
γ

c̄
√
2

(√
1 +

|x|2
L2

− 1

)
W (L),(4.4)

where we have used (3.11).

4.4. Effective aperture. To obtain a more explicit characterization of the fo-
cusing we consider the case with the mirror being Gaussian in space and the identity
in time:

G1(s) = 1,

G2(v) = Na(v),

where the positive parameter a gives the size of the mirror (in the ε scale). Then we
find

H(s,x;σ, L) =
∂2N∆(L,x)

(s+ σ − θ̄(L,x))

∂s2
,

with ∆(L,x) being defined by

∆2
(L,x) = κ2

spa
2 +D2

(L,x) +D2
(L,0) = κ2

spa
2 +

γL

2c̄2

(
2 +

|x|2
L2

)
.(4.5)
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We write this as

∆2
(L,x) = =

γL

c̄2
+ κ2

spa
2
eff ,(4.6)

where we defined the x dependent effective aperture, or more precisely the effective
size of the mirror G2, by

a2
eff = a2 +

γL

2

(
1 +

|x|2
L2

)
.

From (4.4) we find that the wave field on the source plane is characterized by

sL(σ,x) =
C

r

∂2

∂σ2

∫
φ (s)N∆(L,x)

(s+ σ − θ̄(L,x))ds.

Finally, it is convenient to consider the case with a Gaussian source pulse φ(s) with
standard deviation denoted by T . In this case we define

∆̄2
(L,x) := T 2 +∆2

(L,x),(4.7)

and we write

sL(σ,x) =
C

r

∂2

∂σ2
N∆̄(L,x)

(
σ − θ̄(L,x)

)
.

We look at the diffracted field at a given time, say a “snapshot” at σ = 0, and by a
simple explicit calculation we find

sL(0,x) =
C

r

1√
2π∆̄3

(L,x)

(
−1 +

θ̄2
(L,x)

∆̄2
(L,x)

)
e−θ̄2

(L,x)/∆̄
2
(L,x) .(4.8)

The diffraction field in the homogeneous case is obtained by letting γ = 0. It is given
explicitly by

−C
r
√
2π(T 2 + κ2

spa
2)3/2

.

Recall that

κsp =
|x|
c̄r
,

r2 = |x|2 + L2,

so that for large offsets |x| the amplitude of the diffracted field decays as 1/r, that is,
as 1/|x| for L fixed. This slow decay reflects the smallness of the mirror; it corresponds
to the diffraction limit with the mirror effectively having point support in space. We
contrast this decay with the decay in the random case when the diffracted field is
given by (4.8). Observe that for |x| large we have

θ̄2
(L,x)

∆̄2
(L,x)

≈ W (L)2

L
,(4.9)

which, in distribution, is the square of a standardized Gaussian random variable. The
main difference from the homogeneous case is that in the random case (with γ > 0)
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∆̄(L,x) is O(|x|), and not O(1). Therefore, from (4.8), we find that the diffracted field
decays as 1/|x|4. Thus, we can conclude that in this sense the random medium gives
a better refocusing (or “beats the diffraction limit”).

Lemma 4.5. For a fixed distance of propagation L, the time-reversed diffracted
field (4.8) decays as 1/|x| in the homogeneous case and as 1/|x|4 in the random case
(with γ > 0).

4.5. Numerical illustration. From (4.8) and (4.9) we see that upon a normal-
ization by the factor

C

r

1√
2π

(
−1 +

θ̄2
(L,x)

∆̄2
(L,x)

)
e−θ̄2

(L,x)/∆̄
2
(L,x)

the term ∆̄−3
(L,x) characterizes the lateral decay or the focusing of the diffracted field

sL(0,x). It is convenient to rewrite ∆̄2
(L,x) in terms of nondimensionalized variables.

From (4.6) and (4.7) we find

∆̄2
(L,x) = T 2

(
1 +

a2|x2|
r2c̄2T 2

+
γL

2c̄2T 2

(
2 +

|x|2
L2

))
.

We now introduce the wave length λ = c̄T , and we define the nondimensionalized
variables

ã =
a

λ
, x̃ =

|x|
L
, γ̃ =

γL

2λ2
.

These quantities correspond, respectively, to the relative magnitudes of the aper-
ture, the offset, and the medium fluctuations. In terms of these variables the quantity
of interest ∆̄−3

(L,x) can be written

F(x̄; ã, γ̃) := T 3

(
1 + ã2 x̃2

1 + x̃2
+ γ̃(2 + x̃2)

)
.

In order to compare the diffracted fields in the homogeneous and random cases we
normalize F by its value at the origin. In Figure 4.1 we plot

F(x̃; ã, γ̃)

F(0; ã, γ̃)

for various parameter values.
• In the top plot we show the case with a narrow aperture, ã = 1/100. The
dotted, dashed, and solid lines correspond, respectively, to the deterministic,
weak noise (γ̃ = 1/100), and strong noise (γ̃ = 100) cases. The dotted line
shows that in the deterministic case there is no spatial focusing relative to
the geometrical spreading of the deterministic medium; the mirror acts as a
point source. However, random modulation in the medium creates focusing
since wave energy “traveling obliquely” relative to the layering is spread out
relatively more due to the scattering.

• In the bottom plot we show the case with a wide aperture, with ã = 100. In
this case we have focusing also in the deterministic case; however, for large
lateral offset the amplitude is still damped dramatically more in the random
cases.
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Fig. 4.1. In this figure the dotted, dashed, and solid lines correspond, respectively, to the
homogeneous, weak noise and strong noise cases. The lines plot the relative focusing of the diffracted
field as a function of the offset. The top figure illustrates the case with a narrow aperture where
there is no focusing relative to the point source case for the homogeneous medium, while even in
this regime randomness creates focusing. The bottom figure illustrates the case with a wide aperture
where there is some focusing even in the homogeneous case. Note that in both cases the randomness
in the medium improves the decay of the diffracted field.

4.6. Generalization to the off-axis mirror case. The motivation for this
generalization is that in the context of applications to imaging, the mirror might
be located off the axis of the source. We find that the decay of wave energy with
respect to the mirror off-axis displacement is faster in the random case than in the
homogeneous case. In this sense randomness improves the resolution in the source
location problem.

We position the mirror off the axis of the source at the location (d, L). This means
simply that we shift the mirror function G2. In section 4, G2(x

′) is therefore replaced
by G2(x

′ − d/ε) since G2 is defined relative to the ε scale and the displacement of
the mirror is O(1). When we make this modification and repeat the calculations in
section 4 we find that the diffracted field in (4.2) becomes

sL(σ,x) =
−1

16π4c̄4
√
L2 + |d|2√|x− d|2 + L2

∫ ∫
e−iωσφ̌(ω′,0) Ĝ1(ω − ω′)

× e−i(ω′θ(L,d)−ωθ(L,x−d))e−ω′2D2
(L,d)e−ω2D2

(L,x−d)Ĝ2(−ωksp − ω′k′
sp)ωω

′dωdω′,
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where the modified stationary points are defined by

ksp =
x− d

c̄
√
(x− d)2 + L2

,

k′
sp =

d

c̄
√
d2 + L2

.

Note that the times have been evaluated according to the stationary points as before.
Following the analysis of section 4.3 we find that the main effect of randomness is
captured by the Gaussian exponentials

e−ω′2D2
(L,d)e−ω2D2

(L,x−d) ,

which create fast decay with respect to the off-axis displacement |d|.
5. Comments and conclusions. We have considered the phenomenon of su-

perresolution in the context of waves propagating from a point source in a randomly
layered medium. In the regime of separation of scales we have obtained a precise
description of the transmitted coherent field and also of the time-reversed and back-
propagated field, that is, the diffracted field. Our main interest has been in charac-
terizing the spatial focusing properties of this diffracted field. We have shown that
randomness improves the focusing. The reason for this improvement is a spreading
in time of the coherent field. This spreading increases with the lateral offset from
the source point. Observe that this is the mechanism that generates superresolution,
rather than multipathing effect, which is essential in the regime corresponding to the
parabolic wave approximation [5, 21]. In the layered case the random fluctuations
in the medium create randomness in the travel time of the coherent field, and the
main effect of time-reversal is to compensate for this random time shift. This is in
contrast with the parabolic approximation regime where time-reversal is crucial in the
refocusing enhancement.

In this paper we have considered only the coherent part of the wave field. In the
regime that we consider with layered medium fluctuations, strong incoherent wave
components are generated by the scattering. These wave fluctuations can be ob-
served in the coda of the transmitted field or in the incoherent reflected waves; this
has been analyzed in [1]. Time-reversal of such incoherent waves is a very interesting
problem. For the reflected field this has been considered in [10, 18, 22]. For appli-
cations to imaging and communication, time-reversal of the transmitted incoherent
field is important. The one-dimensional case with dispersive waves is studied in [12].
The general layered case is the topic of a forthcoming paper.
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