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Abstract
A time-reversal mirror is, roughly speaking, a device which is capable of
receiving an acoustic signal in time, keeping it in memory and sending it back
into the medium in the reversed direction of time. In this paper, we employ
an accurate numerical method for simulating waves propagating in complex
one-dimensional media. We use numerical simulations to reproduce the time-
reversal self-averaging effect which takes place in randomly layered media.
This is done in the regime where the inhomogeneities are smaller than the
pulse, which propagates over long distances compared to its width. We show
numerical evidence for possible use of an expanding window time-reversal
technique for detecting anomalies buried in the medium.

1. Introduction

A time-reversal mirror is, roughly speaking, a device which is capable of receiving an acoustic
signal in time, keeping it in memory and sending it back into the medium in the reversed
direction of time. In the context of ultrasounds, time-reversal mirrors have been developed
and their effect studied experimentally by Mathias Fink and his collaborators at the Laboratoire
Ondes et Acoustique (ESPCI-Paris) [8, 9]. The main effect is the refocusing of the scattered
signal after time reversal in a random medium: an acoustic pulse is sent in a disordered
medium generating a ‘noisy’ reflected signal which is time reversed and sent back into the
medium. The new reflected signal is a pure pulse with a shape similar to the initial pulse.
Amazingly, its ‘refocusing’ takes place in time and space and seems to be independent of the
realization of the medium, in the regime where its correlation length is smaller than the typical
wavelength of the pulse.

From the theoretical point of view, a first proof of this refocusing effect has been obtained
in [7] in the context of a one-dimensional random medium for which only the time refocusing
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is relevant. The refocusing is obtained by using asymptotics in the regime where there are
three well-separated scales:

correlation length of the medium

wavelength of the pulse
≈ wavelength of the pulse

distance of propagation
� 1.

The fluctuations of the medium are not assumed to be small but rather of the order of several
tens of per cent. In the case of a stationary random medium, a theoretical formula for the
limiting refocused pulse is given in [7]. It shows that the refocused pulse is a convolution of
the initial pulse with a kernel that depends on the cut-off of the reflected signal and on the
autocorrelation of the medium. In the non-stationary case, which is the case for the detection
problem considered in this paper, there is no explicit formula available.

In this study, we write a numerical method in the frequency domain for the one-
dimensional (1D) wave equation and use it to study the time-reversal refocusing effect for
waves propagating through a scatterer comprising many layers with randomly varying wave
speed. On each layer of the scatterer, our method yields two relations in terms of the unknown
field and its normal derivative on the interfaces of that layer. When matched to an incident
field on the first interface, our approach is analogous to a transfer matrix method [1] that
is formulated in the frequency domain. We derive our 1D method via a boundary integral
equation approach in the frequency domain to facilitate future extension to higher dimensions.
For example, in 2D, a boundary integral method has been developed and used to study resonant
modes for electromagnetic scattering in photonic crystal slabs [11]. A frequency domain
boundary integral formulation is also the appropriate context for implementation of a fast
multipole method [13]. Using our 1D method, we simulate the time-reversal refocusing effect
in reflection, and analyse the potential for using time reversal in detecting the presence of an
extended strong scatterer buried in the random medium. The inverse problem, which consists
of reconstructing the large scale variations of the medium (its slowly varying component), is
an extremely challenging problem. It has been addressed in [1, 2] and [12] by using reflected
signals. Theoretically, the slowly varying components of the medium parameters appear in
the coefficients of an infinite system of transport equations [1] and this makes the inverse
problem very delicate. In this paper, we propose to tackle numerically a simpler problem
(i.e. detection of an anomaly of size larger than the typical inhomogeneities), by using an
expanding window time-reversal technique (section 4.2) and, in particular, by exploiting the
self-averaging property of the refocused pulses.

Time reversal in several dimensions has been studied in various regimes: for instance, in
[5] in the parabolic approximation regime, in [10] in the case of a point source in a randomly
layered medium and in [3] for general waves propagating in weakly fluctuating media. Recent
applications to imaging can be found in [6]. The numerical method presented here in the
context of strongly contrasted media is well adapted to multi-dimensional generalizations
which are part of our future work.

2. Formulation of interface equations in the frequency domain

Our numerical formulation is based on a frequency domain boundary integral method which,
in the 1D context, yields a transfer matrix for the unknown components of the field and
its normal derivative on each layer interface. While in 1D, our method is not particularly
novel, the frequency domain boundary integral formulation can be extended to simulate time
reversal in higher dimensions, where theory is available only in special cases. Extension of
the numerical method is briefly discussed in section 2.5.



Time-reversal detection 187

2.1. Green’s functions in the frequency domain

We consider the one-dimensional wave equation for a field u(x, t):

∂2u

∂t2
= c2(x)

∂2u

∂x2
, x ∈ �, t > 0 (1)

where � = (−∞,∞) and c(x) is the wave speed. Let � = (−∞, a0) ∪ �0 ∪ · · · ∪ �N−1 ∪
(aN,∞) where �j = (aj , aj+1), j = 0, . . . , N −1 (a0 < a1 < · · · < aN). A layered medium
is considered by taking c(x) to be piecewise constant on � as follows:

c(x) =
{
cj for x ∈ �j, j = 0, 1, . . . , N − 1
c′ for x ∈ (−∞, a0) ∪ (aN,∞).

(2)

We consider the case in which the continuous quantities on the interfaces x = a0, . . . , aN

are u and ∂u
∂x

. Denote by F̂ (ω) the Fourier transform in time of a function f (t) (F̂ (ω) =∫ ∞
−∞ f (t) eiωt dt).

Taking the Fourier transform of (1) using (2), we obtain the following Helmholtz equations
for each frequency ω (−∞ < ω < ∞):

∂2û

∂x2
+ k2

j û = 0, x ∈ �j (kj = ω/cj ) (3)

∂2û

∂x2
+ k2û = 0, x ∈ (−∞, a0) ∪ (aN,∞)(k = ω/c′). (4)

Introduce a Green’s function Ĥ j (x, y) = (2ikj )
−1 eikj |x−y| for each layer �j of the medium,

and a free space Green’s function Ĥ (x, y) = (2ik)−1 eik|x−y|. These Green’s functions give
rise to outward radiating waves at x = −∞ and satisfy equations (3) and (4), respectively,
with a non-homogeneous singular source term δ(x−y), where δ(x) is the Dirac delta function.

2.2. Interior representations

To represent the field û in the interior of layer �j , we apply reciprocity to (3), integrating on
the interval �j = (aj , aj+1) to obtain, for y ∈ (aj , aj+1),∫ aj+1

aj

û(x)δ(x − y) dx =
∫ aj+1

aj

(
∂2Ĥ j (x, y)

∂x2
û(x) − Ĥ j (x, y)

∂2û(x)

∂x2

)
dx. (5)

Using the filtering property of δ(x) and integration by parts, the domain integrals cancel out
and (5) reduces to

û(y) = ∂Ĥ j (aj+1, y)

∂x
û(aj+1) − ∂Ĥ j (aj , y)

∂x
û(aj ) − Ĥ j (aj+1, y)

∂û(aj+1)

∂y

+ Ĥ j (aj , y)
∂û(aj )

∂y
, y ∈ (aj , aj+1). (6)

Equation (6) determines the field û in the interior of layer �j given the (as yet unknown)
values of the field û and its normal derivative ∂û

∂y
at the boundaries of the layer.

To obtain an interior representation to the left of the scatterer, consider (6) on the interval
(aj , aj+1) = (−L, a0) using the Green’s function Ĥ (x, y). As our incident wave, we choose
a plane wave propagating from left to right. Hence, the field to the left of the scatterer can be
written as û = eiky + ûsc, where ûsc is the scattered wave on (−L, a0). Substituting û into (6),

and using the relations Ĥ (−L, y) = (2ik)−1 eik(y+L) and ∂Ĥ (−L,y)

∂x
= − 1

2 eik(y+L), the second
and fourth terms of (6) reduce to eiky . Taking the limit as L → ∞, an interior representation for
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the reflected field to the left of the scatterer is obtained:

û(y) = ∂Ĥ (a0, y)

∂x
û(a0) − Ĥ (a0, y)

∂û(a0)

∂y
+ eiky, y ∈ (−L, a0). (7)

Similarly, by considering (6) on the interval (aN, L), where there is no incident wave, the limit
as L → ∞ yields the following interior representation for the transmitted field to the right of
the scatterer:

û(y) = −∂Ĥ (aN, y)

∂x
û(aN) + Ĥ (aN, y)

∂û(aN)

∂y
, y ∈ (aN,∞). (8)

2.3. Formulation of a system of equations in the interface unknowns

It remains to determine the unknown values of the field û and its normal derivative ∂û
∂y

on the
interfaces y = a0, a1, . . . , aN . Using a boundary integral method, we obtain a closed system
of linear algebraic equations for these unknowns by taking the limit as the interior point y

approaches the two boundary points of each layer.
Consider the interior representation (6) in layer �j of the medium. Taking the limit as

y → a+
j , and using the fact that

∂Ĥ j (aj ,a
+
j )

∂x
= −1/2 and Ĥ j

(
aj , a

+
j

) = (2ikj )
−1, we obtain a

relation in terms of the interface unknowns for layer �j (j = 0, 1, . . . , N − 1):

1

2
û(aj ) − 1

2ikj

∂û(aj )

∂y
= ∂Ĥ j

(
aj+1, a

+
j

)
∂x

û(aj+1) − Ĥ j
(
aj+1, a

+
j

)∂û(aj+1)

∂y
. (9)

Similarly, taking the limit of (6) as y → a−
j+1 and using the fact that

∂Ĥ j (aj+1,a
−
j+1)

∂x
= 1/2 and

Ĥ j (aj+1, a
−
j+1) = (2ikj )

−1, we obtain a second relation involving the interface unknowns for
layer �j (j = 0, 1, . . . , N − 1):

1

2
û(aj+1) +

1

2ikj

∂û(aj+1)

∂y
= −∂Ĥ j (aj , a

−
j+1)

∂x
û(aj ) + Ĥ j (aj , a

−
j+1)

∂û(aj )

∂y
. (10)

Equations (9) and (10) comprise 2N equations in the 2N + 2 interface unknowns. The
remaining two equations are obtained by performing a similar limiting process on intervals to
the left and right of the layered medium to obtain, respectively:

1

2
û(a0) +

1

2ik

∂û(a0)

∂y
= eika0 and

1

2
û(aN) − 1

2ik

∂û(aN)

∂y
= 0. (11)

The closed system of equations for the 2N + 2 unknown values of the û and ∂û
∂y

on the
interfaces located at y = a0, . . . , x = aN consists of (9), (10) (for j = 0, 1, . . . , N − 1)
and (11). This system of equations is assembled into a banded matrix (bandwidth 5) that is
effectively a transfer matrix for the unknown components of the field and its normal derivative
on the layer interfaces. Solutions of the linear system are obtained at each frequency ω using
a banded solver which, for N layers, requires O(N) operations.

2.4. Example: calculating reflection and transmission amplitudes

Once the interface unknowns are determined via solution of (9)–(11) at a particular reduced
frequency k = ω/c′, the transmitted wave on the interval y ∈ (aN,∞) is determined from (8)
as

ûtr(y) = T̂ (k) eiky, where T̂ (k) = e−ikaN

2

(
û(aN) +

1

ik

∂û(aN)

∂y

)
. (12)
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Similarly, the reflected wave on the interval y ∈ (−∞, a0) is determined from (7) as

ûref(y) = R̂(k) e−iky + eiky, where R̂(k) = eika0

2

(
û(a0) − 1

ik

∂û(a0)

∂y

)
. (13)

2.5. Extension of the boundary integral method to higher dimensions

While in 1D, equations (9)–(11) yield a banded transfer matrix, their formulation using a
boundary integral approach extends to the development of numerical methods for multiple
scattering in higher dimensions. For example, in higher dimensions the layers �j can be
closed regions that define scatterers, with prescribed geometric and material properties, that are
embedded in a homogeneous background medium. In the interior representation (6), the right-
hand side becomes a line integral (2D) or surface integral (3D) written in terms of the field and
its normal derivative on the scatterer interfaces. The 1D Green’s functions for the Helmholtz
equation are replaced by higher dimensional counterparts interior and exterior to the scatterers.
The limiting process of section 2.3 yields a closed system of boundary integral equations on
either a collection of closed contours (2D) or closed surfaces (3D). These integral equations
are solved numerically using a collocation method to obtain approximations to the field and
its normal derivative on the scatterer interfaces. Equation (12) for the transmitted field and
equation (13) for the reflected field then involve integrals written in terms of the computed
field approximations over the union of scatterer interfaces. In higher dimensions, boundary
integral methods reduce the computational mesh by one dimension at the expense of a fully
populated linear system in the collocation. However, analytical manipulation of the Green’s
functions can be used to uncouple near and far-field effects, leading to sparse linear systems
and significant acceleration of the numerical solution of the governing boundary integral
equations.

Using the approach described above, 2D boundary integral numerical methods were
developed for analysis of bandgaps and resonances in 2D photonic crystal slabs (finite in
X, periodic in Y, homogeneous in Z ) [4, 11, 14]. These methods were used to conduct a
parametric analysis of resonance quality for Fabry–Perot laser cavities comprising circular
dielectric rods in both the lossless [14] and lossy [4] cases. Via analytical manipulation of
the 2D Green’s function, the formulation was accelerated in [11] to give a method that was
O(Ñ) in the direction of finite extent (X ), where Ñ is the number of interface collocation
points. This fast method was used to compute complete photonic bandgaps (i.e. for all incident
angles) with random perturbations in crystal geometry, and to analyse resonance quality in the
presence of channel defects. Formulations for the development of efficient boundary integral
numerical methods in the general 2D and 3D cases are presented by Rokhlin in [13]. These
studies can serve as the basis for numerical simulation of time reversal in higher dimensions,
where theoretical results are available only in special cases. However, efficient and accurate
analysis in higher dimensions poses a challenging computational problem due to the inherent
random and multi-scale nature of the time-reversal effect.

3. Time reversal in the frequency domain

We now formulate time reversal of a reflected pulse in terms of the reflection scattering
operator R̂(k) given in (13). Consider a unit-amplitude Gaussian derivative pulse uinc(y, t) =
f

(
y−y0−c′t

ε

)
that is centred at y = y0 when t = 0, where f (x) = −√

exε e−x2/2 and ε is a
characteristic wavelength of the pulse. With this normalization the maximum value of |f | is
exactly 1. The Fourier transform of the pulse is
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ûinc(y, ω) = 1

c′ eiω(y−y0)/c
′
iω

√
2πeε2 e−ε2ω2/(2c′2) (14)

= Â(ω/c′) eiωy/c′
, where Â(k) =

√
2πeε2 ik e−iky0 e−ε2k2/2. (15)

By (13), the reflected signal to the left of the scatterer is given by

ûref(y, ω) = Â(ω/c′)(R̂(ω/c′) e−iωy/c′
+ eiωy/c′

). (16)

We now sample a portion of the reflected signal using a window function Gt0(t) =
H(t) − H(t − t0), where H(t) is the Heaviside step function. The window function is
used to record a sample of the reflected wave at y = y∗ starting at time t = t∗. Hence, the
reflected wave is sampled for a duration t0 in the time interval t ∈ (t∗, t∗ + t0). The sample of
the reflected signal in the time-domain ũref(t) is given by

ũref(t) = uref(y, t)Gt0(t − t∗ + (y − y∗)/c′) (17)

where the Fourier transform of uref(y, t) is given by (16). The sampled signal (17) is then
reversed in time to obtain a new incident wave utr(t) = ũref(t

∗ + t0 − t). Using (17), the new
incident wave utrev(y, t) can be written in the frequency domain as the convolution:

ûtrev(y, ω) = 1

2πc′
[
eiω(t0+(y−y∗)/c′)Ĝt0(−ω)

]
∗[

eiω(t∗+t0+y0/c
′)(−iω)

√
2πeε2 e−ε2ω2/(2c′2)(eiωy/c′ ¯̂R(ω/c′) + e−iωy/c′

)
]

(18)

where ¯̂R(ω/c′) is the complex conjugate of R̂(ω/c′). By (13), the second reflection of the new
(time-reversed) incident wave is then obtained as ûref

trev(y, ω) = ûtrev(y, ω)(R̂(ω/c′) e−iωy/c′
+

eiωy/c′
), which can be written explicitly as

ûref
tr (y, ω) = iε2

c′

√
e

2π
(R̂(ω/c′) e−iωy/c′

+ eiωy/c′
) eiω(t0+(y−y∗)/c′)

∫ ∞

−∞
ω̃

× e−ε2ω̃2/(2c′2)eiω̃(t∗+(y0+y∗−y)/c′)(eiω̃y/c′ ¯̂R(ω̃/c′) + e−iω̃y/c′
)
ei(ω̃−ω)t0 − 1

i(ω̃ − ω)
dω̃. (19)

Fourier inversion of (19) gives the time-reversed pulse uref
trev(y, t) in the time domain.

4. Numerical simulations

We employed the method described in section 2.3 in the numerical simulation of time reversal
for the wave equation (1) and (2) with wave speeds cj in the layers varying randomly
about a background velocity c′ = 1. The layered random medium was located on the
interval [0, 1] and layers of a fixed width 1/N were considered by placing the interfaces at
aj = j/N (j = 0, 1, . . . , N). The initial pulse location y0, signal recording location y and
time-reversal recording location y∗ were all taken to be one unit to the left of the layered
medium (i.e. y0 = y = y∗ = −1). Since c = c′ = 1 on the left of the layered medium,
the time at which sampling of the reflected signal commences was taken as t∗ = 2. The
remaining parameters, which control the multiple scales in the problem, are the characteristic
pulse wavelength ε, the number of layers N and the length of the sampling interval t0. This
set-up, used in the detection problem in section 4.2, corresponds to an expanding time window
with t∗ fixed and t0 increasing. Alternatively, one can consider a sliding time window which
would correspond to t∗ increasing and t0 fixed.

For a particular random realization of the layered medium we first computed, at each
frequency, the reflection amplitude by solving the linear system (9)–(11) and using the result
in (13). We considered a finite number of equally spaced frequencies and, by symmetry, it was
sufficient to evaluate all functions in the frequency domain at only non-negative frequencies.
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(c) (d)

t0
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Figure 1. A pulse scattered by a randomly layered medium generates a noisy reflected signal
shown in (a), and magnified in (b). A simulation with five random realizations (c) shows that the
reflected signal depends on the realization of the medium. The reflected signal is sampled using a
window of size t0, time reversed and sent back into the same medium. Time-reversal refocusing
is demonstrated in (d) for five realizations, as well as the self-averaging property of the refocused
pulse.

All computations were performed using a 1 GHz dual-processor Apple G4 Power Macintosh
in MATLAB 6.5 which employs 16-digit precision. All simulations were conducted for
N = 1000 layers and a banded solver was used for rapid and accurate inversion of the
coefficient matrix in the assembled linear system. The time-reversed pulse was calculated
in the time domain via numerical integration of the convolution integral in (19) followed
by a second numerical integration for Fourier inversion. In both cases, Simpson’s rule
was employed. The same set of sampling frequencies were used in computation of the
scattering operator, and in the numerical integration of (19) and the Fourier inversion formula.
Once the scales for the layers and pulse were set via N and ε, respectively, the frequency
resolution required for numerical convergence could be determined. In the finest scale regime
considered in this study (i.e. N = 1000, ε = 0.1/

√
N ), we found that the frequency sampling

ω ∈ (−1000, 1000),�ω = 0.25 was sufficient for visual overlapping of successively refined
computations of the time-reversed pulse in the time domain.

4.1. Pulse refocusing and self-averaging via time reversal

Numerical simulation of time reversal in reflection is illustrated in figure 1 for the case
N = 1000 with ε = 1

r
√

N
, r = 10 and cj = 1/

√
1 + ηj , where ηj is a sequence of i.i.d.



192 M A Haider et al
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r=1 r=2

r=10r=4

Figure 2. Refocusing and self-averaging of the time-reversed pulse is demonstrated as
the characteristic pulse wavelength ε = 1

r
√

N
is varied via the parameter r in the case N = 1000.

The factor r compensates for a small autocorrelation produced by our i.i.d. medium. It is fixed in
the regime where the multiple scales become well separated, and from our experiments (a)–(d) the
value r = 10 shows a good tuning of the pulse to the medium in terms of quality of self-averaging
of the refocused pulse. For each value of r, the refocused pulse is shown for ten random realizations
of the layered medium.

random variables that are uniformly distributed over the interval (−0.8, 0.8). Observe that
in the homogenization regime the quantity to be homogenized is 1/c2(x), so that the way
we modelled the velocity random fluctuations corresponds to centred fluctuations around the

homogenized quantity 1
/
c2
j = 1. The time required to compute the refocused pulse in the

time domain for a single realization of the layered medium was roughly 14 min.
At the recording location y = −1, a typical time signal demonstrating reflection of the

incident pulse is shown in figure 1(a). Using the window function Gt0 , a sample of the reflected
signal of duration t0 is recorded (figure 1(b)), reversed in time and then re-introduced into the
layered medium as a new incident wave. Multiple realizations demonstrate that the reflected
wave does not exhibit a self-averaging property that can capture characteristics of the layered
medium (figure 1(c)). In contrast, the reflection of the new (time-reversed) incident wave
refocuses the pulse in a manner that is self-averaging with respect to random realizations of
wave speed in the component layers of the scattering medium (figure 1(d)).

In figure 2, we illustrate self-averaging and refocusing of the time-reversed pulse as its
characteristic wavelength ε = 1

r
√

N
is tuned to the fine scale of the random medium via the

parameter r. For each r, we computed the time-reversed pulse for ten random realizations of
the layered medium. As the pulse wavelength is decreased, separation between the fine
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scale of random variation, the intermediate scale of pulse wavelength and the distance
of propagation leads to exhibition of the self-averaging property of the refocused pulse
when r = 10 (figure 2(d)). In this regime, with t0 relatively large so that the recording
window contains most of the reflected signal, the physical wavelength of the refocused pulse
matches that of the original incident pulse with roughly a 12% loss in pulse amplitude due
to transmission of waves through the layered medium not yet reflected. Our finding is in
agreement with the theoretical formula obtained in [7] which shows that, asymptotically in
the regime of separation of scales (ε ↓ 0), the refocused pulse ftr is obtained as a convolution
ftr(t) = (f (·) 	 K(·)) (t) of the time-reversed initial pulse f with a kernel K given by its
Fourier transform K̂(ω) = ∫ t	+t0

t	

(ω, τ) dτ . The density 
 is known explicitly in the case

of homogenous media. We hypothesize that this self-averaging property of the time-reversed
refocused pulse can be employed in detecting the presence of a strong homogeneous scatterer
that is buried in the layered random medium. The idea is that t0/2 corresponds to a depth
of penetration and therefore a comparison of the kernels K̂ with and without a buried object
produces a detection tool. We choose here not to rely on formulae or computation of the
densities 
, since these will not be available in the multi-dimensional context. Rather, we
use a comparison between maxima (amplitudes) of the refocused pulses with and without the
buried object.

For practical applications, we suggest that the experiment be repeated at various locations
in order to acquire maxima of the refocused pulse without the buried object as a function of t0,
and then test other locations by comparison as described above. Strictly speaking this is not
compatible with the assumed layered structure but one can consider that for remote locations
the random layering is independent.

4.2. Detection of a buried extended strong scatterer via time reversal

Numerical simulations were conducted in the self-averaging regime described in the previous
section. We hypothesized that time-reversal detection can be evaluated by comparing the
distribution of refocused pulse amplitudes over multiple random realizations of the layered
medium in the presence and absence of a buried strong scatterer. The strong scatterer is
introduced by setting the wave speed for L layers at a location y = yc to 50c′, where c′ is the
wave speed in the homogeneous background medium. The case L = 100, yc = 0.67 is
illustrated in figure 3(a). A sample realization of the reflected signal for the time-reversal
parameters t∗ = 2.0, t0 = 3.0 is shown in figure 3(b). We observe that the reflected signal
contains no clear signature indicating the presence of a strong scatterer buried in the layered
random medium.

4.2.1. Detecting the presence of the scatterer. We analysed the effect of the strong scatterer on
the amplitude of the time-reversed refocused pulse for multiple time-reversal recording times
t0 (figure 3(c)). An expanding window time-reversal analysis was conducted by increasing
the parameter t0 in increments of 0.5 s up to a value of 3.0 s. For each recording time,
we considered ten random realizations with and without a buried strong scatterer. All 100
random realizations in figure 3(c) were independent. As the recording time t0 is increased to
incorporate portions of the reflected signal that correspond to the depth of the buried object
(i.e. t0 = 1.5 s), we observe a statistically significant difference in mean pulse amplitude
between the cases with and without a buried strong scatterer. The direct coherent reflection
from the strong scatterer interface (where c increases abruptly from 1 to 50) is responsible
for this enhancement of the amplitude of the refocused signal. However, due to the strong



194 M A Haider et al

c=50c’

Random Layered Medium

Random Layered Medium with Strong Scatterer

N=1000 layers

N=1000 layersc=c’=1c=c’=1

c=1
t0

Time reversal sampling duration

Reflected signal
(no strong scatterer)

Reflected signal
(strong scatterer)

(a) (b)

(c)

0.1

0.05

–0.05

–0.1

0

0.1

0.05

–0.05

–0.1

0

2 3 4 5 62.5 3.5 4.5 5.5

2 3 4 5 62.5 3.5 4.5 5.5

R
ef

oc
us

ed
 P

ul
se

 A
m

pl
itu

de

t0=1.0s

strong
scatterer

Realization number

t0=1.5s t0=2.0s t0=2.5s t0=3.0s

strong
scatterer

strong
scatterer

strong
scatterer

strong
scatterer

Figure 3. Numerical simulations for detection using an expanding window time-reversal analysis
(N = 1000 layers, ε = 1

10
√

N
). (a) Independent realizations of the medium with and without a

buried strong scatterer. A pulse is incoming from the right and the scatterer consists of L = 100
layers at a depth yc = 0.67 with wave speed 50c′. (b) Reflected signals: the coherent reflection
due to the strong scatterer is hidden in the noise due to the inhomogeneities. (c) Amplitudes of
refocused pulses as the time-reversal window expands (5 windows, 20 independent realizations
per window: 10 without buried object and 10 with buried object). Horizontal lines indicate mean
amplitudes for each subset of ten realizations.

fluctuations in the medium, this coherent reflection was hidden in the reflected signal, and, in
that sense, time reversal reveals it.

Self-averaging of the pulse amplitude improves as the signal recording time is increased
to t0 = 3.0 s. In this self-averaging regime, these results indicate the potential use of the
time-reversed refocused pulse as a measure for detection of a buried strong scatterer.

To assess the accuracy of the proposed detection measure, we computed the distribution
(i.e. mean, standard deviation) of the refocused pulse amplitude in the case t0 = 3.0 s for 50
random realizations with and without the presence of the strong scatterer described above.
The effect of scatterer size was quantified by varying the parameter L and the random number
generator was assigned a new seed for each value of L. The computed probability distribution
functions are shown in figure 4.

For the case of no scatterer (L = 0), the mean pulse amplitude was 0.8786 with a standard
deviation of 0.0132 while for the largest buried object considered (L = 100) the mean pulse
amplitude was 0.9396 with a standard deviation of 0.0151.

For instance, by choosing a detection amplitude threshold at the level 0.91, we find that:

• the probability of error by false alarm, that is the area to the right of 0.91 under the L = 0
probability density, is less than 1%;
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Figure 4. Probability distributions of refocused pulse amplitude with varying object size L.
For each buried strong scatterer of size L, the refocused pulse amplitude was computed for 50
independent random realizations of the layered medium. The mean and standard deviation of
the amplitudes were fit to a normal distribution. (a) When the buried strong scatterer is as small
as 5% of the size of the layered medium (L = 50), the probability of error in the time-reversal
detection measure is small. (b) When the size of the buried strong scatterer is below 5% of the size
of the layered medium, the probability of error in the time-reversal detection measure increases
significantly.

• the detection power, that is the probability that the amplitude is greater than 0.91 when
the target is present, is over 99% for values of L as low as L = 50 corresponding to a
strong scatterer occupying 5% of the medium;

• the detection power decreases for smaller targets to 88% for L = 40, and 70% for L = 20.

4.2.2. Detecting the location of the scatterer. The potential use of the refocused pulse
amplitude to determine the location of the buried strong scatterer yc was analysed in the case
L = 100. We simulated a time-reversal expanding window experiment based on increasing
t0 by increments of 0.2 s in the range 1–3 s and recording the statistics of the refocused
pulse amplitude for ten realizations of the reference medium (i.e. L = 0). A relatively
small number of realizations were used to model potential limitations associated with data
collection in practical applications. The expanding window experiment was then repeated for
ten independent realizations of the medium with the buried strong scatterer located at y = yc.
Refocused pulse amplitudes were recorded with increasing t0 in the cases yc = 0.5, 0.6, 0.7
(figure 5). In all three cases, it is observed that the refocused pulse amplitude exhibits a
statistically significant jump above the distribution of reference pulse amplitudes at a critical
value of t0 that increases with yc.

Formulation of a strategy for detecting the location of the buried scatterer was then
conducted via analysis of the expanding window data for each realization of the medium. For
each realization of expanding window amplitude data, a critical expanding window time t∗0
was determined using the criterion:

t∗0 = min{t0 ∈ [1, 3]|A(t1)L=100 > {A(t1)L=0} + 2σ {A(t1)L=0}, ∀t1 ∈ [t0, 3]} (20)

where A is the refocused pulse amplitude and σ is the standard deviation. For each realization,
this criterion determines the smallest recording time at which the refocused pulse amplitude
exceeds the reference amplitude by 2σ in further expansion of the recording window. Note that
for larger window size most of the signal would be recorded and consequently the amplitude
of the refocused pulse would be the same with or without the buried object. Distributions of t∗0
with respect to t0 (over ten realizations) for yc = 0.5, 0.6, 0.7 are shown using histograms in
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Figure 5. Results of the expanding window time-reversal experiments for ten independent
realizations of the medium with buried object of size L = 100 at y = yc for three increasing
values.
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Figure 6. Statistical performance of the detection criterion (20) for ten independent realizations
of the medium with buried object of size L = 100 at y = yc for three increasing values. The most
commonly occurring values of t∗0 correspond to 2yc with a systematic bias to the right.

figure 6. For yc = 0.5, 0.6 and 0.7, the most commonly occurring values of t∗0 , corresponding
to 2yc, are observed to be 1.2, 1.4 and 1.6, respectively. These critical times correspond to the
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first time-reversal recording window that contains reflections from the buried scatterer. Using
our criterion (20), detection of scatterer location is most accurate in the case yc = 0.5, where
all values are within one window increment of the correct value of 1.2. Accuracy reduces as
yc increases with 8 of 10 cases within one window increment of 1.4 for yc = 0.6, and 6 of 10
cases within one window increment of 1.6 for yc = 0.7.

In the current study, we considered random media with layers of fixed width 1/N . To
assess the potential effects of varying layer widths, we computed refocused pulse amplitudes in
the case t0 = 1.0 s, L = 0 for 50 realizations of the medium. These realizations were obtained
by generating a set of random cj values (as described earlier) and randomly perturbing the fixed
layer widths 1/N . For perturbations of magnitude 0%, 5%, 10% and 15%, statistics (MEAN±
SD) of the refocused pulse amplitude were 0.7523 ± 0.0248, 0.7519 ± 0.0251, 0.7533 ±
0.0260 and 0.7551 ± 0.0256, respectively. Statistics of the (unsigned) relative error between
pulse amplitudes in the fixed and varying layer width cases show a mean close to 1% with a
standard deviation of less than 1%. This is in agreement with the theoretical analysis which
shows that only the unscaled integrated autocorrelation of the medium

∫ ∞
0 E{η(0)η(x)} dx

plays a role in the limit ε ↓ 0, the correlation length of the medium being of order ε2 (see [7]).
These results show promise for use of a windowed time-reversal technique in detecting the

location of a strong scatterer buried in a randomly layered medium. Inaccuracy in detection
of location will likely minimize as the number of layers is increased to enhance self-averaging
over the realizations of the random medium. In future studies, we will consider larger scale
simulations (N � 103) and note that our frequency domain numerical approach for simulating
time reversal is amenable to parallelization.

5. Conclusions

Using numerical simulations we have demonstrated that time-reversal refocusing for acoustic
pulses shows promise for detection of a strong scatterer buried in a random medium. This is
in the regime where the correlation length of the medium is small but where the fluctuations
are large, making the detection problem extremely challenging. Our numerical experiments
are performed in the acoustic 1D case with a method that is well adapted to more realistic
multi-dimensional situations.
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