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Abstract

After the celebrated Black-Scholes formula for pricing call options under
constant volatility, the need for more general nonconstant volatility models
in financial mathematics has been the motivation of numerous works during
the Eighties and Nineties. In particular, a lot of attention has been paid to
stochastic volatility models where the volatility is randomly fluctuating driven
by an additional Brownian motion. We have shown in [2, 3] that, in the presence
of a separation of time scales, between the main observed process and the
volatility driving process, asymptotic methods are very efficient in capturing
the effects of random volatility in simple robust corrections to constant volatility
formulas. From the point of view of partial differential equations this method
corresponds to a singular perturbation analysis. The aim of this paper is to deal
with the nonsmoothness of the payoff function inherent to option pricing. We
present the case of call options for which the payoff function forms an angle at
the strike price. This case is important since these are the typical instruments
used in the calibration of pricing models. We establish the pointwise accuracy of
the corrected Black-Scholes price by using an appropriate payoff regularization
which is removed simultaneously as the asymptotics is performed.

1 Introduction

Stochastic volatility models in financial mathematics can be thought of as a Brownian-
type particle (the stock price) moving in an environment where the diffusion coefficient
is randomly fluctuating in time according to some ergodic (mean-reverting) diffusion
process. We then have two Brownian motions, one driving the motion of the particle
and the other driving the fluctuations of the medium. In the context of Physics there
is no natural correlation between these two Brownian motions since they do not “live”

∗Department of Mathematics, NC State University, Raleigh NC 27695-8205,
fouque@math.ncsu.edu. Work partially supported by NSF grant DMS-0071744.

†Department of Mathematics, Stanford University, Stanford CA 94305, papan-

ico@math.stanford.edu
‡Department of Operations Research & Financial Engineering, Princeton University, E-Quad,

Princeton NJ 08544, sircar@princeton.edu. Work partially supported by NSF grant DMS-0090067.
§Department of Mathematics, University of California, Irvine CA 92697, ksolna@math.uci.edu

1



in the same space. In the context of Finance they jointly define the dynamics of the
stock price under its physical probability measure or an equivalent risk-neutral mar-
tingale measure. Correlation between them is perfectly natural. There are economic
arguments for a negative correlation or leverage effect between stock price and volatil-
ity shocks, and from common experience and empirical studies, asset prices tend to go
down when volatility goes up. The diffusion equation appears as a contingent claim
pricing equation, its terminal condition being the payoff of the claim. We refer to [5]
or [6] for surveys on stochastic volatility. When volatility is fast mean-reverting, on
a time-scale smaller than typical maturities, one can perform a singular perturbation
analysis of the pricing PDE. As we have shown in [2], this expansion reveals a first
correction made of two terms: one is directly associated with the market price of
volatility risk and the other is proportional to the correlation coefficient between the
two Brownian motions involved. We refer to [2] for a detailed account of evidence of
a fast scale in volatility and the use of this asymptotics to parametrize the evolution
of the skew or the implied volatility surface. We also refer to [4] for a different type
of application, namely variance reduction in Monte Carlo methods.

The present paper deals with the accuracy of such an expansion in presence of
another essential characteristic feature in option pricing, namely the nonsmoothness
of payoff functions. We present the case of call options since these are the liquid
instruments used in the calibration of pricing models. By inverting the Black-Scholes
formula the price of a call option is given in terms of its implied volatility which
depends on the strike and the maturity of the option. This set of implied volatilities
form the term structure of implied volatility. For fixed maturity and across strikes it
is known as the smile or the skew due to the observed asymmetry. These objects and
their dynamics are what volatility models are trying to reproduce in order to price
and hedge other instruments.

In [2] we have performed an expansion of the price in powers of the characteristic
mean-reversion time of volatility, and we have shown that the leading order term
corresponds to a Black-Scholes price computed under a constant effective volatility.
The first correction involves derivatives of this constant volatility price. When the
payoff is smooth we have shown that the corrected price, leading order term plus first
correction, has the expected accuracy, namely the remainder of the expansion is of
the next order. The nonsmoothness of a call payoff which forms an angle at the strike
price creates a singularity at the maturity time near the strike price of the option.

This paper is devoted to the proof of the accuracy of the approximation in that
case. It is important because this is a natural situation in financial mathematics one
has to deal with. The proof given here relies on a payoff smoothing argument which
can certainly be useful in other contexts.

In Section 2 we introduce the class of stochastic volatility models which we con-
sider. They are written directly under the pricing equivalent martingale measure and
with a small parameter representing the short time-scale of volatility. We recall how
option prices are given as expected values of discounted payoffs or as solutions of
pricing backward parabolic PDE’s with terminal conditions at maturity times. In
Section 3 we recall the formal asymptotic expansion presented in [2]. In Section 4 we
introduce the regularization of the payoff and decompose the main result, accuracy
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of the price approximation, into three Lemmas. Section 5 is devoted to the proof of
these Lemmas. Detailed computations involving derivatives of Black-Scholes prices
up to order seven are given in the appendices where we also recall the properties of
the solutions of Poisson equations associated with the infinitesimal generator of the
Ornstein-Uhlenbeck process driving the volatility.

2 Class of Models and Pricing Equations

The family of Ornstein-Uhlenbeck driven stochastic volatility models (Sε
t , Y

ε
t ) that

we consider can be written, under a risk-neutral probability IP ?, in terms of the small
parameter ε

dSε
t = rSε

t dt+ f(Y ε
t )Sε

t dW
?
t ,

dY ε
t =

[

1

ε
(m− Y ε

t )− ν
√

2√
ε

Λ(Y ε
t )

]

dt+
ν
√

2√
ε
dẐ?

t ,

where the Brownian motions (W ?
t , Ẑ

?
t ) have instantaneous correlation ρ ∈ (−1, 1):

d〈W ?, Ẑ?〉t = IE?{dW ?
t dẐ

?
t } = ρ dt,

and

Λ(y) =
ρ(µ− r)

f(y)
+ γ(y)

√

1− ρ2,

is a combined market price of risk. It describes the relationship between the physical
measure under which the stock price is observed, and the risk-neutral measure under
which the market prices derivative securities. See [2] for example. The price of the
underlying stock is Sε

t and the volatility is a function f of the process Y ε
t . At the

leading order 1/ε, that is omitting the Λ-term, Y ε
t is an Ornstein-Uhlenbeck (OU)

process which is fast mean-reverting with a normal invariant distribution N (m, ν2).
Notice that in this framework the volatility driving process (Y ε

t ) is autonomous in
the sense that the coefficients in its defining SDE do not depend on the stock price
Sε

t .
In this fast mean-reverting stochastic volatility scenario, the volatility level fluc-

tuates randomly around its mean level, and the epochs of high/low volatility are
relatively short. This is the regime that we consider and under which we analyze
the price of European derivatives. A derivative is defined by its nonnegative payoff
function H(S) which prescribes the value of the contract at its maturity time T when
the stock price is S. The payoff function must in general satisfy the integrability
condition

IE?{H(ST )2} <∞,

with IE? denoting expectation with respect to IP ?. Moreover, we assume:

1. The volatility is positive and bounded: there are constants m1 and m2 such
that

0 < m1 ≤ f(y) ≤ m2 <∞ ∀y ∈ R.
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2. The volatility risk-premium is bounded:

|γ(y)| < l <∞ ∀y ∈ R.
for some constant l.

It is convenient at this stage to make the change of variable

Xε
t = log Sε

t , t ≥ 0,

and write the problem in terms of the processes (Xε
t , Y

ε
t ) which satisfy, by Itô’s

formula the stochastic differential equations

dXε
t =

(

r − 1

2
f(Y ε

t )2

)

dt + f(Y ε
t ) dW ?

t , (2.1)

dY ε
t =

[

1

ε
(m− Y ε

t )− ν
√

2√
ε

Λ(Y ε
t )

]

dt+
ν
√

2√
ε
dẐ?

t . (2.2)

We also define the payoff function h in terms of the log stock price via

H(ex) = h(x), x ∈ R.
The price at time t < T of this derivative is a function of the present value of the

stock price, or equivalently the log stock price, X ε
t = x and the present value Y ε

t = y
of the process driving the volatility. We denote this price by P ε(t, x, y). It is standard
in finance to assume the price is given by (2.3) which is the expected discounted payoff
under the risk-neutral probability measure IP ?. See [1] for example.

P ε(t, x, y) = IE?
{

e−r(T−t)h(Xε
T )|Xε

t = x, Y ε
t = y

}

. (2.3)

We shall also write these conditional expectations more compactly as

P ε(t, x, y) = IE?
t,x,y

{

e−r(T−t)h(Xε
T )
}

.

Under the assumptions on the models considered and the payoff, P ε(t, x, y) is the
unique classical solution to the associated backward Kolmogorov partial differential
equation problem

LεP ε = 0, (2.4)

P ε(T, x, y) = h(x)

in t < T , x, y ∈ R, where we have defined the operators

Lε =
1

ε
L0 +

1√
ε
L1 + L2

L0 = ν2 ∂
2

∂y2
+ (m− y)

∂

∂y
, (2.5)

L1 =
√

2ρνf(y)
∂2

∂x∂y
−
√

2νΛ(y)
∂

∂y
, (2.6)

L2 =
∂

∂t
+

1

2
f(y)2 ∂

2

∂x2
+

(

r − 1

2
f(y)2

)

∂

∂x
− r · . (2.7)
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The operator L0 is the infinitesimal generator of the OU process (Yt) defined by

dYt = (m− Yt) dt+ ν
√

2 dẐ?
t , (2.8)

L1 contains the mixed partial derivative due to the correlation and the derivative due
to the market price of risk, and L2, also denoted by LBS(f(y)), is the Black-Scholes
operator in the log variable and with volatility f(y).

3 Price approximation

We present here the formal asymptotic expansion computed as in [2, 3] which leads
to a (first-order in

√
ε) approximation P ε(t, x, y) ≈ Qε(t, x). In the next section we

prove the convergence and accuracy as ε ↓ 0 of this approximation which consists of
the first two terms of the asymptotic price expansion:

Qε(t, x) = P0(t, x) +
√
εP1(t, x),

which do not depend on y and are derived as follows. We start by writing

P ε = Qε + εQ2 + ε3/2Q3 + · · · = P0 +
√
εP1 + εQ2 + ε3/2Q3 + · · · , (3.1)

Substituting (3.1) into (2.4) leads to

1

ε
L0P0 +

1√
ε

(L0P1 + L1P0) (3.2)

+ (L0Q2 + L1P1 + L2P0) +
√
ε (L0Q3 + L1Q2 + L2P1) + · · · = 0.

We shall next obtain expressions for P0 and P1 by successively equating the four
leading order terms in (3.2) to zero. We let 〈·〉 denote the averaging with respect to
the invariant distribution N (m, ν2) of the OU process Y introduced in (2.8):

〈g〉 =
1

ν
√

2π

∫

R

g(y)e−(m−y)2/2ν2

dy. (3.3)

Notice that this averaged quantity does not depend on ε.
Below, we will need to solve the Poisson equation associated with L0:

L0χ+ g = 0, (3.4)

which requires the solvability condition

〈g〉 = 0, (3.5)

in order to admit solutions with reasonable growth at infinity. Properties of this
equation and its solutions are recalled in Appendix C.

Consider first the leading order term:

L0P0 = 0.
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Since L0 takes derivatives with respect to y, any function independent of y satisfies
this equation. On the other hand y-dependent solutions exhibit the unreasonable
growth exp(y2/2ν2) at infinity. Therefore we seek solutions which are independent of
y: P0 = P0(t, x) with the terminal condition P0(T, x) = h(x).

Consider next:

L0P1 + L1P0 = 0,

which corresponds to the second term in (3.2). Since L1 contains only terms with
derivatives in y it reduces to L0P1 = 0 and, as for P0, we seek again a function
P1 = P1(t, x), independent of y, with a zero terminal condition P1(T, x) = 0. Hence,
Qε = P0 +

√
εP1, the leading order approximation, does not depend on the current

value of the volatility level.
The next equation

L0Q2 + L1P1 + L2P0 = 0,

which corresponds to the third term in (3.2), reduces to the Poisson equation

L0Q2 + L2P0 = 0, (3.6)

since L1P1 = 0. Its solvability condition

〈L2P0〉 = 〈L2〉P0 = 0,

is the Black-Scholes PDE (in the log variable) with constant square volatility 〈f 2〉:

〈L2〉P0 = LBS(σ̄)P0 =
∂P0

∂t
+

1

2
σ̄2∂

2P0

∂x2
+

(

r − 1

2
σ̄2

)

∂P0

∂x
− rP0 = 0, (3.7)

where we define the effective constant volatility σ̄ by

σ̄2 = 〈f 2〉.
We choose P0(t, x) to be the classical Black-Scholes price, solution of (3.7) with the
terminal condition P0(T, x) = h(x).

Observe that Q2 = −L−1
0 (L2−〈L2〉)P0 as a solution of the Poisson equation (3.6).

This notation includes an additive constant in y which will disappear when hit by the
operator L1 as follows. The fourth term in (3.2) gives the equation :

L0Q3 + L1Q2 + L2P1 = 0. (3.8)

This is a Poisson equation in Q3, and its solvability condition gives

〈L2〉P1 = −〈L1Q2〉 = 〈L1L−1
0 (L2 − 〈L2〉)〉P0,

which, with its zero terminal condition, determines P1 as a solution of a Black-Scholes
equation with constant square volatility 〈f 2〉 and a source term. Using the expressions
for Li one can rewrite the source as:

〈L1L−1
0 (L2 − 〈L2〉)P0 =

〈

L1L−1
0

(

f(y)2 − 〈f 2〉
)〉 1

2

(

∂2

∂x2
− ∂

∂x

)

P0

=

(

v3
∂3

∂x3
+ (v2 − 3v3)

∂2

∂x2
+ (2v3 − v2)

∂

∂x

)

P0, (3.9)
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where

v2 =
ν√
2
(2ρ〈fφ′〉 − 〈Λφ′〉)

v3 =
ρν√

2
〈fφ′〉, (3.10)

and φ is a solution of the Poisson equation:

L0φ(y) = f(y)2 − 〈f 2〉. (3.11)

We can therefore conclude:

1. The first term P0 is chosen to be the solution of the “homogenized” PDE prob-
lem (3.7). In other words, P0 is simply the Black-Scholes price of the derivative
computed with the effective volatility σ̄.

2. The second term, or correction to the Black-Scholes price, is given explicitly, as
a linear combination of the first three derivatives of P0, by

√
εP1 = −(T − t)

(

V ε
3

∂3

∂x3
+ (V ε

2 − 3V ε
3 )

∂2

∂x2
+ (2V ε

3 − V ε
2 )

∂

∂x

)

P0, (3.12)

with

V ε
2,3 =

√
ε v2,3, (3.13)

since it is easily seen, by using 〈L2〉P0 = 0, that equation (3.9) is satisfied, and
that, on the other hand, the terminal condition P1(T, x) = 0 is satisfied when

limt→T (T − t)∂iP0

∂xi = 0 for i = 1, 2, 3.

Essential instruments in financial markets are put and call options for which the
payoff function H(S) is piecewise linear. We shall focus on call options:

H(S) = (S −K)+ ⇒ h(x) = (ex −K)+,

for some given strike price K > 0. Notice that h is only C0 smooth with a discon-
tinuous first derivative at the kink x = logK, (at the money in financial terms).
Nonetheless, at t < T , the Black-Scholes pricing function P0(t, x) is smooth and
P1(t, x) is well-defined, but second and higher derivatives of P0 with respect to x
blow up as t→ T (at the money).

Our main result on the accuracy of the approximation Qε = P0 +
√
ε P1 is as

follows:

Theorem 1 Under the assumptions (1) and (2) above, at a fixed point t < T , x, y ∈
R, the accuracy of the approximation of call prices is given by

lim
ε↓0

|P ε(t, x, y)−Qε(t, x)|
ε| log ε|1+p

= 0,

for any p > 0.
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Observe that this pointwise approximation is the sense of accuracy needed in finance
applications since option prices are computed at given values of (t, x, y).

Before giving in the next Section the proof of Theorem 1, we comment on the
interpretation of the approximation and on the validity of the result for more general
payoffs.

Financial interpretation of the approximation.

In order to give a meaningful interpretation to the leading order term and the
correction in our price approximation it is convenient to return to the variable S,
the underlying price. With a slight abuse of notation we denote the call option price
approximation by P0(t, S)+

√
εP1(t, S). Indeed the leading order term P0(t, S) is the

standard Black-Scholes price of the call option computed at the effective constant
volatility σ̄. From (3.12), one can easily deduce that

√
εP1(t, S) = −(T − t)

(

V ε
2 S

2∂
2P0

∂S2
+ V ε

3 S
3∂

3P0

∂S3

)

, (3.14)

which shows that the correction is a combination of the two greeks Gamma and
Epsilon, as introduced in [2]. This correction can alternatively be written in the form

√
ε P1(t, S) = −(T − t)

(

(V ε
2 − 2V ε

3 )S2∂
2P0

∂S2
+ V ε

3 S
∂

∂S

(

S2∂
2P0

∂S2

))

. (3.15)

Using the classical relation between Gamma and Vega for Black-Scholes prices of
European derivatives

∂P0

∂σ
= (T − t)σS2∂

2P0

∂S2
,

which is easily obtained by differentiating the Black-Scholes PDE with respect to σ,
one can rewrite the correction as:

√
ε P1(t, S) = − 1

σ̄

(

(V ε
2 − 2V ε

3 )
∂P0

∂σ
+ V ε

3 S
∂

∂S

(

∂P0

∂σ

))

. (3.16)

Therefore the price correction is a combination of the Vega and the Delta-Vega of the
Black-Scholes price. The Vega term corresponds simply to a volatility level correction.
The Delta-Vega term is proportional to the correlation coefficient ρ and captures the
main effect of skewness in implied volatility as discussed in detail in [2].

Other payoff functions.

The main idea of the proof presented in the next Section is a regularization of the
payoff which does not rely on the particular choice of a call option. The only place
where we use the explicit Black-Scholes formula for a call option is in the computation
(B.1) of the successive derivatives ∂n

xP
δ
0 carried out in the Appendix B. Note that if

we had started with a payoff function h which is continuous and piecewise smooth
(a call option being a particular case), then P δ

0 , the solution of the parabolic PDE
(3.7), is an integral of the payoff function with respect to a normal density as in the
case of a call option. The first derivative with respect to x can be taken on the payoff
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function and the higher order derivatives can then be taken on the normal density
as detailed in Appendix B for a call option. Therefore Theorem 1 remains valid for
general European claims with continuous payoffs that have singular behavior in their
derivatives.

Numerical illustration. To illustrate the asymptotic approximation, we compare
the approximation

Qε = P0 +
√
εP1

with a numerical solution of the PDE (2.4) for a particular stochastic volatility model
and a call option with strike price K = 100 and three months from expiration. (In
practice, the asymptotic approximation is not used in this manner because of the
difficulties of estimating the volatility parameters precisely; instead the parameters
of the approximation V ε

2 and V ε
3 are estimated directly from observed options prices,

as described in [2]).
We choose f(y) = ey, where this is understood to stand for a cutoff version of

the exponential function with the cutoffs (above and below) sufficiently large and
small respectively so as not to affect the calculations within the accuracy of our
comparisons. We use the parameter values

ε = 1/200, m = log 0.1, ν = 1/
√

2, ρ = −0.2,

µ = 0.2, r = 0.04,

and choose the volatility risk premium γ ≡ 0. It follows from explicit calculations
that the parameters for the asymptotic approximation are

σ̄ = 0.165, V ε
2 = −3.30× 10−4, V ε

3 = 8.48× 10−5.

Figure 1 shows the numerical solution from an implicit finite-difference approxi-
mation at two levels of the current volatility ey, one at the long-run mean-level σ̄, and
one far above it (0.607). These are compared to the asymptotic approximation which
does not depend on the current volatility level. In the range 0.95 ≤ K/S ≤ 1.04
shown in the picture on the right, the maximum deviation of the asymptotic approx-
imation from the price with the higher volatility is by 9% of the latter price, and the
maximum deviation of the asymptotic approximation from the price with the lower
volatility is by 2.1% of this price.

4 Derivation of the accuracy of the price approxi-

mation

In order to prove Theorem 1, we introduce in the next section the regularized price,
P ε,δ, the price of a slightly smoothed call option, with δ being the (small) smoothing
parameter. We denote the associated price approximation Qε,δ. The proof then
involves showing that (i) P ε ≈ P ε,δ, (ii) Qε,δ ≈ Qε, (iii) P ε,δ ≈ Qε,δ, and controlling
the accuracy in these approximations by choosing δ appropriately.
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Figure 1: Call option prices 3 months from maturity as a function of the current
stock price S. The strike price is K = 100 and the picture on the right focuses on
the region ”around the money”.

4.1 Regularization

We begin by regularizing the payoff, which is a call option, by replacing it with the
Black-Scholes price of a call with volatility σ̄ and time to maturity δ. We define

hδ(x) := CBS(T − δ, x;K, T ; σ̄),

where CBS(t, x;K, T ; σ̄) denotes the Black-Scholes call option price as a function of
current time t, log stock price x, strike price K, expiration date T and volatility σ̄.
It is given by

CBS(t, x;K, T ; σ̄) = P0(t, x;K, T ; σ̄) = exN(d1)−Ke−r τ2

σ̄2N(d2) (4.1)

N(x) =
1√
2π

∫ x

−∞

e−y2/2 dy

d1 =
x− logK

τ
+ bτ

d2 = d1 − τ,

where we define

τ = σ̄
√
T − t b =

r

σ̄2
+

1

2
.

For δ > 0, this new payoff is C∞. The price P ε,δ(t, x, y) of the option with the
regularized payoff solves

LεP ε,δ = 0

P ε,δ(T, x, y) = hδ(x).
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4.2 Main convergence result

Let Qε,δ(t, x) denote the first-order approximation to the regularized option price:

P ε,δ ≈ Qε,δ ≡ P δ
0 +

√
εP δ

1 ,

where

P δ
0 (t, x) = CBS(t− δ, x;K, T ; σ̄) (4.2)

√
εP δ

1 = −(T − t)

(

V ε
3

∂3

∂x3
+ (V ε

2 − 3V ε
3 )

∂2

∂x2
+ (2V ε

3 − V ε
2 )

∂

∂x

)

P δ
0 . (4.3)

We establish the following pathway to proving Theorem 1 where constants may de-
pend on (t, T, x, y) but not on (ε, δ):

Lemma 1 Fix the point (t, x, y) where t < T . There exist constants δ̄1 > 0, ε̄1 > 0
and c1 > 0 such that

|P ε(t, x, y)− P ε,δ(t, x, y)| ≤ c1δ

for all 0 < δ < δ̄1 and 0 < ε < ε̄1.

This establishes that the solutions to the regularized and unregularized problems are
close.

Lemma 2 Fix the point (t, x, y) where t < T . There exist constants δ̄2 > 0, ε̄2 > 0
and c2 > 0 such that

|Qε(t, x)−Qε,δ(t, x)| ≤ c2δ

for all 0 < δ < δ̄2 and 0 < ε < ε̄2.

This establishes that the first-order asymptotic approximations to the regularized and
unregularized problems are close.

Lemma 3 Fix the point (t, x, y) where t < T . There exist constants δ̄3 > 0, ε̄3 > 0
and c3 > 0 such that

|P ε,δ(t, x, y)−Qε,δ(t, x)| ≤ c3

(

ε| log δ|+ ε

√

ε

δ
+ ε

)

,

for all 0 < δ < δ̄3 and 0 < ε < ε̄3.

This establishes that for fixed δ, the approximation to the regularized problem con-
verges to the regularized price as ε ↓ 0.

The convergence result follows from these Lemmas:
Proof of Theorem 1. Take δ̄ = min(δ̄1, δ̄2, δ̄3) and ε̄ = min(ε̄1, ε̄2, ε̄3). Then using

Lemmas 1, 2 and 3, we obtain

|P ε −Qε| ≤ |P ε − P ε,δ|+ |P ε,δ −Qε,δ|+ |Qε,δ −Qε|

≤ 2 max(c1, c2)δ + c3

(

ε| log δ|+ ε

√

ε

δ
+ ε

)

,
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for 0 < δ < δ̄ and 0 < ε < ε̄, where the functions are evaluated at the fixed (t, x, y).
Taking δ = ε, we have

|P ε −Qε| ≤ c5(ε+ ε| log ε|),
for some fixed c5 > 0, and Theorem 1 follows.

A general conclusion to our work is given in Section 6 after the proofs of Lemmas
1,2 and 3 given in the following section.

5 Proof of Lemmas

5.1 Proof of Lemma 1

We use the probabilistic representation of the price given as the expected discounted
payoff with respect to the risk-neutral pricing equivalent martingale measure IP ?.

P ε,δ(t, x, y) = IE?
t,x,y

{

e−r(T−t)hδ(Xε
T )
}

.

We define the new process (X̃ε
t ) by

dX̃ε
t =

(

r − 1

2
f̃(t, Y ε

t )2

)

dt+ f̃(t, Y ε
t )
(

√

1− ρ2 dŴ ?
t + ρ dẐ?

t

)

,

where (Ŵ ?
t ) is a Brownian motion independent of (Ẑ?

t ), (Y ε
t ) is still a solution of (2.2)

and

f̃(t, y) =

{

f(y) for t ≤ T
σ̄ for t > T .

Then we can write

P ε,δ(t, x, y) = IE?
t,x,y

{

e−r(T−t+δ)h(X̃ε
T+δ)

}

,

and
P ε(t, x, y) = IE?

t,x,y

{

e−r(T−t)h(X̃ε
T )
}

.

Next we use the iterated expectations formula

P ε,δ(t, x, y)− P ε(t, x, y) =

IE?
t,x,y

{

IE?
{

e−r(T−t+δ)h(X̃ε
T+δ)− e−r(T−t)h(X̃ε

T ) | (Ẑ?
s )t≤s≤T

}}

,

to obtain a representation of this price difference in terms of the Black-Scholes function
P0 which is smooth away from the terminal date T . In the uncorrelated case it
corresponds to the Hull-White formula [7]. In the correlated case, as considered here,
this formula is in [8], and can be found in [2](2.8.3). It is simple to compute explicitly
the conditional distribution D(X̃ε

T |(Ẑ?
s )t≤s≤T , X̃

ε
t ) of X̃ε

T given the path of the second

Brownian motion (Ẑ?
s )t≤s≤T . One obtains

D(X̃ε
T |(Ẑ?

s )t≤s≤T , X̃
ε
t = x) = N (mε

1, v
ε
1),

12



where the mean and variance are given by

mε
1 = x+ ξt,T + (r − 1

2
σ̄2

ρ)(T − t)

vε
1 = σ̄2

ρ(T − t)

and we define

ξt,T = ρ

∫ T

t

f̃(s, Y ε
s ) dẐ?

s −
1

2
ρ2

∫ T

t

f̃(s, Y ε
s )2ds (5.1)

σ̄2
ρ =

1− ρ2

T − t

∫ T

t

f̃(s, Y ε
s )2ds.

It follows from the calculation that leads to the Black-Scholes formula that

IE?
t,x,y{e−r(T−t)h(X̃ε

T ) | (Ẑ?
s )t≤s≤T} = P0(t, X̃

ε
t + ξt,T ;K, T ; σ̄ρ).

Similarly, we compute

D(X̃ε
T+δ | (Ẑ?

s )t≤s≤T , X̃
ε
t = x) = N (mε

2, v
ε
2),

where the mean and variance are given by

mε
2 = x + ξt,T + rδ + (r − 1

2
σ̃2

ρ,δ)(T − t)

vε
2 = σ̃2

ρ,δ(T − t),

and we define

σ̃2
ρ,δ = σ̄2

ρ +
δσ̄2

T − t
.

Therefore

IE?
t,x,y{e−r(T−t+δ)h(X̃ε

T+δ) | (Ẑ?
s )t≤s≤T} = P0(t, X̃

ε
t + ξt,T + rδ;K, T ; σ̃ρ,δ),

and we can write

P ε,δ(t, x, y)− P ε(t, x, y) =

IE?
t,x,y {P0(t, x+ ξt,T + rδ;K, T ; σ̃ρ,δ)− P0(t, x + ξt,T ;K, T ; σ̄ρ)} .

Using the explicit representation (4.1) and that σ̄ρ is bounded above and below as
f(y) is, we find

|P0(t, x + ξt,T + rδ;K, T ; σ̃ρ,δ)− P0(t, x+ ξt,T ;K, T ; σ̄ρ)| ≤ δc1(e
ξt,T [|ξt,T |+ 1] + 1)

for some c1 and for δ small enough. Using the definition (5.1) of ξt,T and the existence
of its exponential moments, we thus find that

|P ε(t, x, y)− P ε,δ(t, x, y)| ≤ c2δ

for some c2 and for δ small enough.
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5.2 Proof of Lemma 2

From the definition (3.12) of the correction
√
εP1 and the corresponding definition

(4.3) of the correction
√
εP δ

1 we deduce

Qε,δ −Qε

=

(

1− (T − t)

(

V ε
3

∂3

∂x3
+ (V ε

2 − 3V ε
3 )

∂2

∂x2
+ (2V ε

3 − V ε
2 )

∂

∂x

))

(P δ
0 − P0).

From the definition (3.10) of the vi’s, the definition (3.13) of the Vi’s and the bounds
on the solution of the Poisson equation (3.11) given in Appendix C, it follows that

max(|V ε
2 |, |V ε

3 |) ≤ c1
√
ε

for some constant c1 > 0. Notice that we can write

P δ
0 (t, x) = P0(t− δ, x).

Using the explicit formula (4.1), it is easily seen that P0 and its successive derivatives
with respect to x are differentiable in t at any t < T . Therefore we conclude that for
(t, x, y) fixed with t < T :

|Qε(t, x)−Qε,δ(t, x)| ≤ c2δ

for some c2 > 0 and δ small enough.

5.3 Proof of Lemma 3

We first introduce some additional notation. Define the error Zε,δ in the approxima-
tion for the regularized problem by

P ε,δ = P δ
0 +

√
εP δ

1 + εQδ
2 + ε3/2Qδ

3 − Zε,δ,

for Qδ
2 and Qδ

3 stated below in (5.3) and (5.4). Setting

Lε =
1

ε
L0 +

1√
ε
L1 + L2,

one can write

LεZε,δ = Lε
(

P δ
0 +

√
εP δ

1 + εQδ
2 + ε3/2Qδ

3 − P ε,δ
)

(5.2)

=
1

ε
L0P

δ
0 +

1√
ε
(L0P

δ
1 + L1P

δ
0 )

+(L0Q
δ
2 + L1P

δ
1 + L2P

δ
0 ) +

√
ε
(

L0Q
δ
3 + L1Q

δ
2 + L2P

δ
1

)

+ε
(

L1Q
δ
3 + L2Q

δ
2 +

√
εL2Q

δ
3

)

= ε
(

L1Q
δ
3 + L2Q

δ
2

)

+ ε3/2L2Q
δ
3 ≡ Gε,δ

14



because P ε,δ solves the original equation LεP ε,δ = 0 and we choose P δ
0 , P δ

1 , Qδ
2 and

Qδ
3 to cancel the first four terms. In particular, we choose

Qδ
2(t, x, y) = −1

2
φ(y)

(

∂2P δ
0

∂x2
− ∂P δ

0

∂x

)

, (5.3)

so that
L0Q

δ
2 = −L2P

δ
0 ,

(with an “integration constant” arbitrarily set to zero) whereas Qδ
3 is a solution of

the Poisson equation

L0Q
δ
3 = −(L1Q

δ
2 + L2P

δ
1 ), (5.4)

where the centering condition is ensured by our choice of P δ
1 .

At the terminal time T we have

Zε,δ(T, x, y) = ε
(

Qδ
2(T, x, y) +

√
εQδ

3(T, x, y)
)

≡ Hε,δ(x, y), (5.5)

where we have used the terminal conditions P ε,δ(T, x, y) = P δ
0 (T, x) = hδ(x) and

P δ
1 (T, x) = 0. This assumes smooth derivatives of P δ

0 in the domain t ≤ T which
is the case because hδ is smooth. It is shown in Appendix A that the source term
Gε,δ(t, x, y) on the right-side of equation (5.2) can be written in the form

Gε,δ = ε

(

4
∑

i=1

g
(1)
i (y)

∂i

∂xi
P δ

0 + (T − t)

6
∑

i=1

g
(2)
i (y)

∂i

∂xi
P δ

0

)

+ε3/2

(

5
∑

i=1

g
(3)
i (y)

∂i

∂xi
P δ

0 + (T − t)
7
∑

i=1

g
(4)
i (y)

∂i

∂xi
P δ

0

)

. (5.6)

In Appendix A we also show that the terminal condition Hε,δ(x, y) in (5.5) can be
written

Hε,δ(x, y) = ε

(

2
∑

i=1

h
(1)
i (y)

∂i

∂xi
P δ

0 (T, x)

)

+ ε3/2

(

3
∑

i=1

h
(2)
i (y)

∂i

∂xi
P δ

0 (T, x)

)

. (5.7)

To bound the contributions from the source term and terminal conditions we need the
following two Lemmas that are derived in Appendix C and Appendix B respectively:

Lemma 4 Let χ = g
(j)
i or χ = h

(j)
i with the functions g

(j)
i and h

(j)
i being defined in

(5.6) and (5.7). Then there exists a constant c > 0 (which may depend on y) such
that IE? {|χ(Y ε

s )|Y ε
t = y} ≤ c <∞ for t ≤ s ≤ T .

Lemma 5 Assume T − t > ∆ > 0 and IE? {|χ(Y ε
s )|Y ε

t = y} ≤ c1 < ∞ for some
constant c1 then there exist constants c2 > 0 and δ̄ > 0 such that for δ < δ̄ and
t ≤ s ≤ T

|IE?
t,x,y

{

n
∑

i=1

χ(Y ε
s )

∂i

∂xi
P δ

0 (s,Xε
s)

}

| ≤ c2[T + δ − s]min[0,1−n/2], (5.8)
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and consequently

|IE?
t,x,y

{

∫ T

t

(T − s)p
n
∑

i=1

e−r(s−t)χ(Y ε
s )

∂i

∂xi
P δ

0 (s,Xε
s) ds

}

| (5.9)

≤
{

c2 | log(δ)| for n = 4 + 2p
c2 δ

min[0,p+(4−n)/2] else .

Proof of Lemma 3
We use the probabilistic representation of equation (5.2), LεZε,δ = Gε,δ with

terminal condition Hε,δ:

Zε,δ(t, x, y) = IE?
t,x,y

{

e−r(T−t)Hε,δ(Xε
T , Y

ε
T )−

∫ T

t

e−r(s−t)Gε,δ(s,Xε
s , Y

ε
s )ds

}

.

From Lemma 5 it follows that there exists a constant c > 0 such that

|IE?
t,x,y

{
∫ T

t

e−r(s−t)Gε,δ(Xε
s , Y

ε
s )ds

}

| ≤ c
{

ε+ ε| log(δ)|+ ε
√

ε/δ
}

(5.10)

|IE?
t,x,y

{

Hε,δ(Xε
T , Y

ε
T )
}

| ≤ c
{

ε+ ε
√

ε/δ
}

, (5.11)

and therefore also for (t, x, y) fixed with t < T :

|P ε,δ −Qε,δ| = |εQδ
2 + ε3/2Qδ

3 − Zε,δ|
≤ c

{

ε+ ε| log(δ)|+ ε
√

ε/δ
}

. (5.12)

since Qδ
2 and Qδ

3 evaluated for t < T can also be bounded using (5.3) and (A.5).

6 Conclusion

We have shown that the singular perturbation analysis of fast mean-reverting stochas-
tic volatility pricing PDE’s can be rigorously carried out for call options. We found
that the leading order term and the first correction in the formal expansion are cor-
rect. The accuracy is pointwise in time, stock price and volatility level. It is precisely
given in Theorem 1. The first correction involves higher order derivatives of the
Black-Scholes price which blow up at maturity time and at the strike price. To over-
come this difficulty we have used a payoff smoothing method and we have exploited
the fact that the perturbation is around the Black-Scholes price for which there is an
explicit formula. The case of call options is particularly important since the calibra-
tion of models is based on these instruments. The case of other types of singularities
is open. With some work one can certainly generalize the method presented here
to other European derivatives such as binary options. The case of path-dependent
derivatives such as barrier options is more difficult due to the lack of an explicit for-
mula for the correction. The situation with American contracts such as the simplest
one, the American put, is much more involved due to the singularities at the exercise
boundary.
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Appendices

A Expressions for Source Term and Terminal Con-

dition

From (5.2), the source term in the equation for the error Zε,δ is

Gε,δ = ε
(

L1Q
δ
3 + L2Q

δ
2

)

+ ε3/2L2Q
δ
3. (A.1)

To obtain an explicit form for this source term, we consider the three terms separately.
We first introduce the convenient notation:

D ≡ ∂

∂x

D2 ≡ ∂2

∂x2
− ∂

∂x
.

Consider the term L2Q
δ
2 in (A.1). Using that

L2 = LBS(f(y)) = LBS(σ̄) +
1

2

(

f(y)2 − σ̄2
)

D2 (A.2)

LBS(σ̄)D2P
δ
0 = 0,

and (5.3), one deduces:

L2Q
δ
2 = −1

4

(

f(y)2 − σ̄2
)

φ(y)D2D2P
δ
0 .

Consider next the term L1Q
δ
3 in (A.1). Using (3.8) we have

Qδ
3 = −L−1

0

(

L1Q
δ
2 + L2P

δ
1 − 〈L1Q

δ
2 + L2P

δ
1 〉
)

, (A.3)

= −L−1
0

(

L1Q
δ
2 − 〈L1Q

δ
2〉+ (L2 − 〈L2〉)P δ

1

)

.

It follows from (5.3) that:

L1Q
δ
2 =

(√
2νρf(y)

∂2

∂x∂y
−
√

2νΛ(y)
∂

∂y

)(

−1

2
φ(y)D2P

δ
0

)

= − 1√
2
νρf(y)φ′(y)DD2P

δ
0 +

1√
2
νΛ(y)φ′(y)D2P

δ
0 .

Now let ψ1 and ψ2 be solutions of

L0ψ1 = f(y)φ′(y)− 〈fφ′〉, (A.4)

L0ψ2 = Λ(y)φ′(y)− 〈Λφ′〉,

then we find using (3.11) and (A.2) that Qδ
3 can be written:

Qδ
3 =

(

νρ√
2
ψ1(y)DD2P

δ
0 −

ν√
2
ψ2(y)D2P

δ
0

)

− 1

2

(

φ(y)D2P
δ
1

)

. (A.5)
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Substituting for L1 and expanding gives

L1Q
δ
3 = ν2ρ2f(y)ψ′1(y)DDD2P

δ
0 − ν2ρf(y)ψ′2(y)DD2P

δ
0

−ν2ρΛ(y)ψ′1(y)DD2P
δ
0 + ν2Λ(y)ψ′2(y)D2P

δ
0

− ν√
2

(

ρf(y)φ′(y)DD2P
δ
1 − Λ(y)φ′(y)D2P

δ
1

)

.

Consider finally the term L2Q
δ
3 in (A.1), we find using (A.2) and (A.5)

L2Q
δ
3 =

1

2
(f(y)2 − σ̄2)

[

ρν√
2
ψ1(y)D2DD2P

δ
0 −

ν√
2
ψ2(y)D2D2P

δ
0 −

1

2
φ(y)D2D2P

δ
1

]

−1

2
φ(y)D2

(

v3D3P
δ
0 + v2D2P

δ
0

)

,

with

D3 =
∂3

∂x3
− 3

∂2

∂x2
+ 2

∂

∂x
and v2,3 defined in (3.10).
To summarize, the source term is given by

Gε,δ = ε
{

ν2ρ2f(y)ψ′1(y)DDD2P
δ
0 − ν2ρf(y)ψ′2(y)DD2P

δ
0

−ν2ρΛ(y)ψ′1(y)DD2P
δ
0 + ν2Λ(y)ψ′2(y)D2P

δ
0

− ν√
2

(

ρf(y)φ′(y)DD2P
δ
1 − Λ(y)φ′(y)D2P

δ
1

)

−1

4

(

f(y)2 − σ̄2
)

φ(y)D2D2P
δ
0 }

+ε3/2

{

1

2
(f(y)2 − σ̄2)

[

ρν√
2
ψ1(y)D2DD2P

δ
0 −

ν√
2
ψ2(y)D2D2P

δ
0 −

1

2
φ(y)D2D2P

δ
1

]

−1

2
φ(y)D2(v3D3P

δ
0 + v2D2P

δ
0 )

}

By inspection, this can be written in the form (5.6).
From (5.3) and (A.5) we can also see that the terminal condition H ε,δ in (5.5) can

be written in the form (5.7).

B Proof of Lemma 5

To prove Lemma 5 notice first that a calculation based on the analytic expression for
the Black-Scholes price in the standard constant volatility case gives

∂n
xP

δ
0 (s, x) =

{

exN(u/τ + bτ) for n = 1

exN(u/τ + bτ) +
∑n−2

i=0
b
(n)
i

τ
eu∂i

ue
−(u/τ+bτ)2/2 for n ≥ 2

(B.1)

for some constants bi and with

τ ≡ σ̄
√
T + δ − s

u ≡ x− log(K)

b ≡ (r/σ̄2 + 1/2).
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Assume first that T − s ≥ (T − t)/2 > 0, so that τ ≥ σ̄
√

(T − t)/2. Since
∂i

xP
δ
0 (s, x) is uniformly bounded in δ, it follows that

|IE?
t,x,y

{

χ(Y ε
s )∂i

xP
δ
0 (s,Xε

s)
}

| ≤ cIE?
t,x,y {|χ(Y ε

s )|} (B.2)

for some constant c which may depend on x.
Consider next the case 0 < T − s < (T − t)/2, then

|IE?
t,x,y

{

χ(Y ε
s )∂i

xP
δ
0 (s,Xε

s)
}

| = |IE?
t,x,y

{

χ(Y ε
s )IE?

t,x,y

{

∂i
xP

δ
0 (s,Xε

s) | Ẑ?
v ; t ≤ v ≤ s

}}

|,

and

|IE?
t,x,y

{

1

τ
eu∂i

ue
−(u/τ+bτ)2/2 | Ẑ?

v ; t ≤ v ≤ s

}

| (B.3)

=
1

τ
|
∫

eu∂i
ue
−(u/τ+bτ)2/2p(u)du|

=
1

τ i
|
∫

eτu∂i
ue
−(u+bτ)2/2p(τu)du| ≤ c

τ i

where p is the conditional distribution of u ≡ Xε
s − log(K), which is the Gaussian

distribution with variance at least (T − t)(1 − ρ2)m2
1/2. The bound (5.8) follows

readily from (B.1), (B.2) and (B.3). The bound (5.9) is a direct consequence of (5.8)
and Lemma 5 is established.

C On the solution of the Poisson equation

Let χ solve

L0χ + g = 0,

with L0 defined as in (2.5) and with g satisfying the centering condition

〈g〉 = 0,

where the averaging is done with respect to the invariant distribution associated with
the infinitesimal generator L0 (see (3.3) for an explicit formula). Using the explicit
form of the differential operator L0, one can easily deduce that

Φ(y)χ
′

(y) =
−1

ν2

∫ y

−∞

g(z)Φ(z) dz =
1

ν2

∫ ∞

y

g(z)Φ(z) dz

with Φ being the probability density of the invariant distribution N (m, ν2) associated
with L0. From this it follows that if g is bounded

|χ′

(y)| ≤ c1

|χ(y)| ≤ c2(1 + log(1 + |y|)).
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Notice that χ in Lemma 4 satisfies

|χ(y)| ≤ cmax(|φ(y)|, |φ′

(y)|, |ψ1,2(y)|, |ψ
′

1,2(y)|)

for some constant c and with φ and ψ1,2 defined in (3.11) and (A.4) respectively. These
functions are solutions of Poisson equations with g = f 2 − 〈f 2〉 or g = fφ′− 〈fφ′〉 or
g = Λφ′−〈Λφ′〉 which are bounded. Therefore χ(y) is at most logarithmically growing
at infinity. The bound in Lemma 4 now follows from classical a priori estimates on
the moments of the process Y ε

t which are uniform in ε. In the case Λ = 0 this can
easily be seen by a simple time change t = εt′ in (2.2). The case Λ 6= 0 follows by a
Girsanov change of measure argument.
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