TIME-REVERSED REFOCUSING OF SURFACE WATER WAVES
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Abstract. A time-reversal mirror is, roughly speaking, a device which is capable of receiving a
signal in time, keeping it in memory and sending it back into the medium in the reversed direction of
time. A brief mathematical review of the time-reversal theory is presented in the context of the linear
shallow water equations. In particular an explicit expression is given for the refocused pulse in the
simplest time-reversal case. The explicit expression for the power spectral density of the reflection
process is used to construct the highpass filter which controls the refocusing process. Time-reversal
numerical experiments in the (effectively) linear regime are used to validate the nonlinear shallow
water code. The numerically refocused pulse is compared with the theoretical predicted shape.
Further numerical experiments illustrate the robustness of the theory. In particular the time-reversal
refocusing with smaller cutoff windows, the self-averaging property and finally refocusing when the
nonlinear term is small but not negligible.
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1. Introduction. A time-reversal mirror is, roughly speaking, a device which is
capable of receiving an acoustic signal in time, keeping it in memory and sending it
back into the medium in the reversed direction of time. In the context of ultrasounds
time-reversal mirrors have been developed and their effect studied experimentally by
Mathias Fink and his collaborators at the Laboratoire Ondes et Acoustique (ESPCI-
Paris). The main effect is the refocusing of the scattered signal after time-reversal
in a random medium: an acoustic pulse is sent in a disordered medium generating a
“noisy” reflected signal which is time-reversed and sent back into the medium. The
new reflected signal is a pure pulse with a shape similar to the initial pulse. Amazingly
its “refocusing” takes place in time and space and seems to be independent of the
realization of the medium, in the regime where its correlation length is smaller than the
typical wavelength of the pulse. Experiments in the context of underwater acoustics
have been conducted by Kuperman et al. and show the same phenomenon. We refer
to reference [12] for a description of these experiments and further references.

From the theoretical point of view, a first proof of this refocusing effect has been
obtained by Clouet and Fouque [10] in the context of a one-dimensional random
medium for which only the time refocusing is relevant. The refocusing is obtained by
using asymptotics in the regime where there are three well separated scales:

correlation length of the medium _ wavelength of the pulse

wavelength of the pulse ™ distance of propagation

The fluctuations of the medium are not assumed to be small but rather of the order of
several tens of percent. This result has been extended to the case of 3D layered media
by Fouque and Ndzie [16] where it is shown that refocusing takes place in time as well
as in space. More recently space refocusing has been analysed in the context of small
fluctuation and the parabolic approximation by Blomgren, Papanicolaou and Zhao [3]
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and Papanicolaou, Ryhzik and Sglna [23]. They show that time-reversal and random-
ness helps in “beating” the diffraction limit: they call this effect super-resolution. A
complete proof of super-resolution for three-dimensional randomly layered media has
been obtained in Fouque and Sg¢lna [15]. Potential applications of these effects are
numerous in imaging and wireless communication.

The goal of this paper is to present the time-reversal and refocusing of water
waves and, of particular interest, to initiate a study of the effect of nonlinearity
on the refocusing effect. For doing so we use the context of gravity driven water
waves, propagating in shallow one-dimensional channels in the regime where the fluid
is considered to be inviscid and incompressible. The randomness comes from the
topography at the bottom of the shallow channel. Note that the shallow water regime
is dictated by having a small depth to wavelength ratio. This is the same as the
long wave regime. Velocity and elevation at the free surface are described through
the shallow water equations which contain a Burgers’ type nonlinearity controlled
by the amplitude of the wave. For small amplitude-to-depth ratios the nonlinearity
is negligible and we are back to the one-dimensional case studied from Clouet and
Fouque [10]. Moreover a very efficient numerical code has been developed for solving
these nonlinear equations. It provides an extremely accurate tool to conduct numerical
experiments on the effect of nonlinearity on time-reversal refocusing. We first validate
this tool in the linear regime and show, as predicted by the theory, that refocusing
indeed takes place: a right travelling pulse shaped wave is sent from the left side of the
random portion of the medium. It interacts with the fluctuating bottom and produces
a reflected “noisy” wave propagating towards the left of the disordered channel. At
the left end of the channel this wave is time-reversed by simply changing the sign of
its velocity profile and sent back into the random medium. It then produces a new
reflected wave which appears to be a “clean” pulse with a shape independent of the
realization of the medium. The pulse shape is of a deterministic character. This is
called the stabilization of the refocused pulse shape and is due to the self-averaging
property. The theory provides an analytical description of this “new” (refocused)
pulse which is perfectly captured by the numerical experiments.

We then increase the amplitude of the incoming pulse in order to study computa-
tionally the effect of nonlinearity. For small nonlinearity, and way before shocks form,
our numerical results show that refocusing still takes place providing evidence of the
robustness of this effect.

Regarding applications in water waves, the problem of waveform inversion has
been studied by adjoint methods in Pires and Miranda [24] and the references within.
Their goal is to characterize the initial sea surface displacement due to tsunamigenic
earthquakes. In other words one would like to recover (numerically) relevant details
of a tsunami source from tidal gauge observations. In our case, instead of performing
the backward numerical integration of the corresponding adjoint equations, we use
the (same) forward numerical model but with the time-reversed data. Waveform
inversion is obtained through the time-reversed refocusing effect. In a separate work,
Fouque, Garnier and Nachbin [14], the mathematical theory for the time-reversal of
linear hyperbolic waves is extended to the more realistic case of dispersive waves.

This paper is organized as follows. In section 2 we present a brief review of the
linear time-reversal acoustic theory in the context of the shallow water equations. In
particular we give an explicit expression for the refocused pulse in the simplest time-
reversal case: a random medium without a slowly varying background, where time-
reversal is performed using the indicator function of the full time-recording interval. In
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this case we use the explicit expression for the power spectral density of the reflection
process and construct the highpass filter which controls the refocusing process. In
section 3 we present the nonlinear shallow water equations used in our numerical
experiments. Time-reversal experiments in the (effectively) linear regime are used to
validate the numerical code. In particular we compare the observed refocused pulse
with its predicted shape. We also perform numerical experiments with a smaller
cutoff window, we verify numerically the self-averaging property and finally we (still)
observe refocusing when the nonlinear term is small but not negligible.

2. One-Dimensional Time-Reversal: A Brief Review of the Theory. In
this section we briefly review the theory presented in [10]. We mainly focus on what is
happening at the interface {x = 0} between the constant medium on the left and the
random medium on the right (c.f. Figure 4.1). Tt is natural to look at the quantities
of interest in time at the interface and we know that this is equivalent to look at
them in space on the left half-space due to the constant speed of propagation. Also
particular attention is paid to the scaling of the problem.

2.1. The Model. Let ¢(z,t) be the flux function and n(x,t) the free surface
elevation. In the linear regime the shallow water equations become

Uiz + wz =0
which are the acoustic equations where v is the velocity of the wave and 7 the
pressure. Eventhough in our model the fluctuations occur naturally on the depth
h(z) = g~1c*(x), we shall rather consider them on 1/c?(x) which is the quantity
which is naturally averaged by the wave in the homogenization process. We will ex-
plain at the end of this section how to modify the theory in order to take this into
account. Our model is

% - i (1+ plz/e))

on the half-space {x > 0} with a constant speed ¢¢ on the half-space {x < 0}. The
stochastic process p is stationary, centered, bounded (|u| < C < 1, for some constant
() and is assumed to be exponentially mixing in the sense that it “decorrelates” expo-
nentially fast. Our examples constructed with i.i.d. random variables will satisfy this
mixing condition. By rescaling i as p(z/e) we make the correlation length of order
€ where € > 0 is a small parameter. Observe that the size of the fluctuations, namely

(1(0)?) (where the brakets denote an average with respect to the invariant measure
of p), is not small but rather of order a few tens of percents in our applications. The
boundary conditions will correspond to a pulse incoming from the left and entering
the random medium at {z = 0}, and a radiation condition at +co. This last condition
is achieved by making the medium constant far away to the right and imposing no
left-going wave on this part of the medium. The hyperbolicity of the problem insures
that at a finite time this latter boundary condition does not affect the quantities of
interest on the left half-space. Observe also that, at the interface {x = 0}, we have
matched the constant medium on the left with the averaged medium on the right in

the sense that
1 1
2 \cE@x)/’
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In the constant left half-space we decompose the wave into the right-going wave
A= c(l)/277 + 051/21/1, and the left-going wave B = 70(1)/277 + 00_1/21/1. Our incoming

pulse at {x = 0} is given by:

A(t,0) = af(t),

where f is the pulse shape (typically the derivative of a Gaussian) and a represents
the amplitude. This setup means that a right-going wave A(t,z) = af(t — x/cq) is
coming from the left (z < 0). The reflected signal at the interface is denoted by
By(t) so that it corresponds to a left-going wave B(t,z) = Bo(t + x/cp) on the left
half-space.

2.2. Scales. The size of the pulse is of order one in the sense that it is indepen-
dent of the small parameter ¢ which represents the correlation length of the random
medium. If we observe the reflected wave after a time of order one we will only see
the result of homogenization since the wavelength is much larger than the size of the
inhomogeneities. Since the homogenized medium on the right half-space matches the
constant medium on the left half-space we essentially would see nothing reflected. One
has to wait longer to see the fluctuations “build-up” and create a “noisy” reflected
wave. The asymptotic theory is extremely precise, by using diffusion-approximation
results, when the reflected wave is observed for a long time of order 1/e. In this
case we are in the white noise regime inside of the medium and the powerfull tools
of stochastic calculus associated to Brownian motion can be used (we refer to [8] for
more details).

Since we are dealing with long times of order 1/¢ and therefore long distances
of propagation of the same order, it is convenient to rescale the problem by setting
t = t'/e and x = a'/e so that 2’ and t’ become our macroscopic space and time
variables. The correlation length becomes €2 since u(x/e) becomes (2’ /e?) and the
typical wavelength becomes e since the pulse is now f(¢'/e). The speed c¢g of the
uniform medium does not change in this macroscopic scale.

2.3. Integral representation. Using Fourier transform in time one can derive
the following integral representation for the reflected wave [1, 10]:

a

(2.2) Bo(t') = %/e—iw%f(w)}za(o,w) dw

where R?(0,w) is the reflection coefficient of the random medium at the interface
x = 0, when, at frequency w, a wave of unit amplitude is incoming from the left.

2.4. Time-Reversal. Time-reversal consists in using the reflected wave (or a
part of it) as a new incoming wave in the reversed direction of time. We send the
initial pulse and then monitor the reflected wave up to time ¢{,. Let us denote by
Gy (t') a cutoff function with support in [0,%y]. The piece of reflected wave is

Bo(t')Gy (')

which after time-reversal becomes Bo(ty —t')Gy, (t; —t'). In order to use the integral
representation formula (2.2) one needs to compute the Fourier transform of this new
incoming wave in the original time scale t = t'/e. We set

g(t) = Bo(th — ct)Gy (th — t)
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and we compute its Fourier transform:

(23) o) = ge® [ RN TGy (222 av

T ome €

where, for simplicity, we have dropped the tj-subscript in G. Sending back into
the random medium the time-reversed wave g(t) will produce a new reflected wave
denoted by BI'T(t'). Looking at it after a long time and in the scale of the original
pulse means that we set ¢’ = t] + et and using the integral representation formula
(2.2) we get:

1 ; 4

BIE(t) 4 et) = — /eﬂ‘”teﬂ“’?lg(w)Rs(O,w) dw .
(27)

Combined with (2.3) we get that B is given as a double frequency integral:

By (t) +et) =

r_yt

ﬁ //eiwte—iw(tlf 0)?@/) Re(0,w) RE(O,w’)Cf% <WTW/> dw' dw .

After the change of variables w’ = w + eh, it becomes:

BIE(t) +et) =

(2m)?

/e*iwt (/f(w +eh) R(0,w) R*(0,w + £h) Gy (—h) dh) e_“(;) dw.

2.5. Asymptotics. Looking first at the expected reflected wave consists in tak-
ing the expectation of the previous integral representation of BI%(#] + et), in other
words, by averaging over many realizations of the medium. By linearity of the integral
we get:

BiE(t) +et) =

g [ ([ T et e {00 BT} Gy an ) )

The asymptotic analysis of the wave equations inside the random medium shows that
E {RE(O,w) Re(0,w + eh)} converges, as £ goes to zero, to a quantity that we shall

denote by u(w, h). On the other hand ?(w + eh) converges to ?(w) and this integral
goes to zero due to the fast phase exp(—iw(t] — t()/¢), unless | = t. In that case
the limit is simply:

lim B { BY At +<t)} = #/eﬂ'm?(w) </u(w,h)(ft6(h)dh) dw .

Introducing the Fourier transform A(w,t’) of u(w, h), we get:

gi_I%]E {BOTR(t6 + €t)} = % /eii‘”t?(w) (A(w, ) * G% (— )) (0) dw
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which, as a function of ¢ is the initial pulse af(t) convolved with Hy (t) where Hy
denotes the inverse Fourier transform of (A(w,-) * Gy (— -)) (0) with respect to w:

Elii%]E{BOTR(t’O +et)} = (af xHy) (t).

This convergence is actually much stronger and the limit is in fact the same for all
realizations (except for a set of realizations of measure zero). This is obtained by per-
forming the asymptotic analysis of & {BOT Rty + st)Q} which involves four frequencies:
E {Ra(o, w1) RE(0, w1 + 2hy) R (0, ws) RZ(0, g + ghg)} .

It can be shown (for instance in [5]) that, in the limit ¢ | 0, the (w1, h)-terms
decorrelate from the (wa, ha)-terms and one can deduce that the variance of BZ (¢} +

et) goes to zero. The time refocusing property can be summarized in:

0 if ) #t
. TRy _ 17 %o
(24) lim By ™ (th + &t) —{ (af % Hy) (1) if # =1
In the homogenous medium case (constant background) we have considered here,
A(w,t) can be computed explicitly [4]:
2
oW
Aw,t) = —F——
(14 w?a,t)?
where

o= [ EuOnta)s)

is the integrated correlation of the medium. Observe that taking ¢{, large and G the
indicator function of [0, ;] means that we are sending back the full reflected wave. In
this case (A(w,-)* Gy (— -)) (0) can be computed explicitly since

a,w? dr — Wt .
1+ ayw?r)? 1+ auw?t]

(Aw,) Gy (=) (0) = /0°° A(w,T)G%(Tft)dT:/OO (

This can be interpreted as a highpass filter in the expression where the time-reversed
pulse is given by

(25) 70 = g [ e (1228

27 1+ a,wt)

The filter for the time-reversal procedure has been graphed in Figure 2.1. Note that
this highpass filter becomes identically one in the limit ¢{ — co. Figure 2.1 confirms
this fact. Therefore Hy, tends to a delta function and the initial pulse af is exactly
recovered through time reversal.

2.6. Almost Stationary Case. In the context of this paper, shallow water
surface waves, it is natural to model the fluctuations of the bottom of the channel or
equivalently the depth of the channel. We do that by putting random depths at the
mesh points je, on a grid of mesh ¢, inside the random slab:

h(je) = ho(1 + 0Z;)
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Fig. 2.1. The right and left graphs illustrate the highpass filter for the time-reversed
reflection process. Graph (A) describes the filter used to obtain the theoretical pulse shape
to be presented in Figure 4.4, namely for ¢, = 0.5. In graph (B) we let ¢, = 5. Note that
the time-reversed refocused signal will contain (nearly) all the Fourier content of the initial
data. In both cases we used o, = 0.08. This value is calculated below.

where the random variables Z;’s are independent and identically uniformly distributed
over (—1,1) for instance, while 0 < o < 1 “measure” the size of the fluctuations
(several tens of percent typically). We then define h(z) by an interpolation procedure.
Here we chose the linear interpolation because it is very convenient for the efficiency
of the numerical code. In fact the nature of the results explained in Section 2.5 does
not depend on that particular choice but only the parameters ¢y and « are affected.
The model for 1/¢?(z) is then given by

11 1
@) gh(®)  gho (1 + p(z/2)))
where
(2.6) plafe) =02, +0 (2 =j) (Zim - Z))

for je < 2 < (j 4 1)e. This model, compared to the one in Section 2.1, poses two
problems:

1. The homogenized medium is not 1/gho.

2. The stochastic process p is not stationary.
The correct homogenized medium is obtained by:

Ly /L 1 p
— = lim — ——dy
¢ L—oo L Jo gho(l+ p(y))
which is also given by:

Jj+1 1
2=®{f - i}
¢ i gho(l1+0Z;+o(y—3j)(Zj+1— Zj))
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o [res(E)
gho | o(Zjv1 = Zj)

which can be computed by using the uniform distribution of (Z;, Z;+1) over the square

(—1,1)%

+
g,

2idz;
52 ghO 1 0 ZJ+1 - zj) S

The nonstationarity of ;1 can be easily incorporated in the theory by replacing «,, =
15 E{u(0)u(x) }da by the modified

auz/ <T1£noo—/ E{u(y) +x)}dy> dx

By using the piecewise linear random topography from equation (2.6) one can deduce

2
Qy = 50'2.
For 60% bottom fluctuations (i.e. ¢ = 0.6) we have that o, = 0.08. Recall that Z;

are iid random variables uniformly distributed over (-1,1).

3. Numerical Setup. In water wave problems [26] the following characteristic
scales are relevant: the typical depth hg, typical wavelength A, typical amplitude
a of the free surface elevation 7(x,t), the horizontal length scale I, of the bottom
irregularities and L the total length of the rough region. When using dimensionless
variables the following dimensionless parameters appear: « = a/h, which controls the
strength of the nonlinearity, 3 = h3/A\? which controls dispersion and v = I, /A which
controls how rapidly the bottom irregularities vary. These parameters arise typically
in nonlinear potential theory and in particular o will be used to set the appropriate
regime through the initial data of our computational experiments.

The nonlinear shallow water model used in our experiments is given by

(3.1) Ui +UU, + VU, = —gn,
(3.2) Vi+ UV +VV, =—gn,
(3.3) ne +[HU], +[HV], =0

where H(z,y,t) = n(z,y,t) + h(z,y). The topography is described by —h(x,y). The
numerical experiments are all one-dimensional. Therefore during the entire dynamics
in the horizontal plane the velocity V(z,y,t) will be automatically set to zero and U
will be y-independent.

Note that the linear one-dimensional shallow water system is

(3.4) Ut +gne =0,

(3.5) e+ (WU )y = 0.
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F1a. 3.1. Schematic picuture for the horizontal 2D mesh. The gray area represents the fluid
body while the white area the impermeable boundary.

which is analogous to the acoustic wave system [10]. It can be put in the form

(3.6) e+ (gh) 1o =0

The flux function per unit width is given by ¥(x,t) = h(z) - U(z,t). This is the form
used to describe the theory in the previous sections.

In our first experiments we will solve the nonlinear shallow water system (3.1-
3.3) in the (effectively) linear regime. Linear propagation regimes are obtained by
setting the amplitude-to-depth ratio, of the initial data, to be small. From previous
experiments performed in Nachbin and Casulli [20] we know that o = 0.001 generates
a linear wave whereas a = 0.1 produces a wave that breaks after a small time interval.
To normalize the reference shallow water speed we choose our parameters so that it
is equal to one in the flat regions: namely we set g = 1/hg so that (ghg) = 1. Several
validation experiments were presented in Nachbin and Casulli [20] and the numerical
solution exhibited very good conservation properties over large propagation distances.

In the numerical experiments we consider a one-dimensional channel (c.f. Fig-
ure 3.1) having a disordered topography as shown in Figure 4.1 where the vertical
scale has been exagerated for graphical reasons. The influence of the topography is
felt through the depth function H(z,y,t). The disordered medium is constructed by
sampling 5300 random heights which are allocated at the mesh points. The finite
difference spacing will coincide with the small parameter ¢ from the time-reversal
problem. These random heights are then connected by straight lines to form the syn-
thetised topography. The channel has a total length of 107 units while the disordered
topography covers 53 units of length. It is allocated from node 5400 up to node 10700
(c.f. Figure 4.1). In all experiments to be presented below we use the same mesh:
Az = 0.01 = ¢, Ay = 0.1 and At = 0.0025. The fluctuations are 60% of the total
(unit) depth. The initial pulse is given by the derivative of a Gaussian

n(x,0) = U(x,0) = —10a (x — ;) exp <_(x();08$]))

and is centered at node j=5250. Its effective width is equal to one. We set a = 0.001
by choosing the initial data with a = 0.001. The topography (as in Figure 4.1) has
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been rescaled so that hg = 1. We allow the simulation to run over 52.5 units of
time (21000 time steps) for which we record the reflected signal at the left end of the
channel.

The equations (3.1-3.3) are discretized by an implicit, semi-Lagrangian technique
which accomplishes the objective that the stability of the scheme does not depend on
the celerity. A fixed staggered grid is defined on the horizontal plane. For the present
one-dimensional experiments we have three lines of grid points along the horizontal
direction, of which only the middle one is relevant (c.f. Figure 3.1). It runs through
the middle of the one-dimensional channel. The other two are used for boundary
conditions. By a semi-Lagrangian technique we mean that the numerical transport is
performed in an Eulerian-Lagrangian manner, relying therefore on the interpolation
of the respective grid point—values at the backward—characteristic points of departure.
Details are given in Casulli and Cheng [6] and the references within.

4. Time Reversal Experiments. In this section we describe how the forward
and time-reversed experiments are performed. We start by describing the geometry
and scales associated to the time-reversal experiments.

4.1. Random medium and scales. First we do a forward numerical experi-
ment with the initial pulse located to the left of the random medium as in Figure 4.1.
As the experiment takes place the pulse will propagate to the right with unit speed
and will interact with the disordered topography. As mentioned above the topography
is synthetised by using a random number generator. Uniformly distributed heights
are place at each mesh point and connected by straight lines as indicated by the (bot-
tom) detail of Figure 4.1. The correlation length of the topography is e = Az = 0.01,
the pulse width is approximately one and the total propagation distance is equal to
50 units. With these values we are in the correct self-averaging regime indicated
by the theory. We should recall that for graphical reasons the wave amplitude has
been exagerated in Figure 4.1. The amplitude-to-depth ratio will be indicated in the
following subsections.

4.2. Reflected signal. As mentioned above we do a forward numerical exper-
iment with the initial pulse located to the left of the random medium as in Figure
4.1. At the end of 50 time-units the free surface disturbance is presented in the lower
graph of Figure 4.2. Recall that the disordered medium is contained in [0, 53]. Over
this interval we see the transmitted pulse and behind it a wave that is undergoing
multiple-scattering. Over the [-50, 0] interval the channel is flat and there the wave
is a left-going reflected wave. The reflected wave is recorded as shown by the top
(windowed) signal in Figure 4.2. The final time is ¢{/e = 50 and the cutoff function
Gy, is the indicator function for the corresponding time interval [0,t(]. This windowed
reflected wave is time-reversed by changing the sign of the velocity profile U(z,t).

4.3. Refocusing experiments.

4.3.1. Large window experiment. We call this a large window experiment
because we are using the whole time interval for which we recorded the reflected
wave. The cutoff function’s support is as large as it can be for this experiment. The
top graph of Figure 4.3 presents the initial condition for the time-reversal refocussing
experiment. It is the same time-reversed reflected wave mentioned above. The time-
reversed wave propagates to the right and starts interacting with the random medium,
as seen in the two intermediate graphs. At time t = t{/e = 50 refocusing takes place.
In the limit € — 0 we should get a perfect refocusing of the wave, with no noise around
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Fia. 4.1. Shallow channel with a disordered topographic right half-space. The correlation
length of the bottom is 0.01 and the fluctuation level is 60% of the average depth. A pulse of
unit width is incoming from the left. Its amplitude has been exagerated for graphical reason.
The top picture is on the scale of typical propagation distances used in the experiments. The
bottom picture is on the scale of the pulse width. Observe that pulse is large compared to
the correlation length of the medium.

it. Note that for a finite value t(;/e = 50 we already get a very sharp refocusing of
our original pulse with very little noisy to its left. This is good indication that the
numerics captures the appropriate regime established by the theory. In Figure 4.4
refocusing is observed at the pulse’s mesoscale. The refocused pulse is compared with
the initial data used in the forward numerical experiment. Only a fraction of the total
energy is refocused since we have a finite ¢.

4.3.2. Partial window experiment. Now we present an experiment exactly
as before but with the cutoff function Gt{) being the indicator function of [0.25, 0.5],
that is G% = 1y s2.47)- The forward experiment is exactly as before but we only time-
reversed the final half of the reflected wave. The same four stages of Figure 4.3 are
repeated graphically for this partial window experiment (c.f. Figure 4.5). Refocusing
still takes place but it is not as sharp as before. In particular there is more noise
around the refocused pulse.

4.3.3. Medium-wave mismatch experiment. We repeat the (large window)
time-reversal experiment relative to Figure 4.2 but with a different realization of
the random medium. There is a mismatch between medium and wave because the
reflected wave was not generated by this realization of the topography. As expected
no refocusing takes place as can be seen in the bottom graph of Figure 4.6.

4.3.4. Self-averaging property. As mentioned in section 2.5 it can be shown
that, in the limit € | 0, the variance of BIE(t, + et) goes to zero. This is the
self-averaging property in the sense that the refocused profile is independent of the
particular realization of the random medium. In order to show that the numerical
code captures very well the self-averaging property we repeated the time-reversal



12 J.P. FOUQUE AND A. NACHBIN

x107°

0.8
TIME-REVERSED WAVE -
0.6

041

0.2

L i

|

~ REFLECTED WAVE TRANSMITTED WAVE -

|
|
|
-04t | 1
|
0.6 : 4
|
-0.8F : -
| RANDOM MEDIUM HALF-SPACE
-1 L L L L L L L L L L
-50 -40 -30 -20 -10 0 10 20 30 40 50

Fia. 4.2. The signal at the bottom shows the reflected wave on the left side of the origin
and the wave propagating and interacting with the random medium on the right side of the
origin, as shown in Figure 4.1. The top signal is the windowed reflected wave which will be
time-reversed and sent back into the medium. Note that “what came out last will be sent
back into the medium first”.

experiment for 10 different realizations of the topography. All the parameters were
kept fixed including the cutoff function (G4, = indicator function of [0, 0.5]). The
shape of the refocused pulse is (statistically) very stable as can be seen in Figure 4.7.
The fluctuations around each refocused pulse are not self-averaged quantities.

4.4. Weak nonlinear effect. This experiment is similar to the one presented
in Figure 4.2. The topography is exactly the same. The only difference is that in
the forward numerical experiment the amplitude-to-depth ratio has been increased
by a factor of 10 (o« = 0.01). This weak nonlinear effect is enough to promote a mild
steapening of the pulse front. This will correspond to the broadening of the pulse’s
Fourier spectrum. The higher frequencies generated interact more strongly with the
random medium and therefore more reflection is observed (c.f. top of Figure 4.8).

The reflected wave is time-reversed as indicated by the windowed signal presented
in the top graph of Figure 4.8. The cutoff function is the indicator function for [0,
0.5]. The time-reversed wave is sent back into the random medium and refocusing
takes place, as before, at t = t;/e = 50. This result is presented at the bottom graph
of Figure 4.8. From this numerical experiments, we have evidence that in this weak
nonlinear regime the shape of the refocused pulse is not affected by the nonlinearity.
At this time the nonlinear theory has not been developed.
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Fia. 4.7. We superimposed the refocused pulses obtained with ten independent realiza-
tions of the medium. Observe that the shape of the refocused pulse is independent of the
realization as predicted by the asymptotic theory. The small fluctuations around are not
self-averaged quantities.
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