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Abstract

In this paper, we study time reversal in reflection of an acoustic

wave in a one-dimensional random medium with an embedded reflec-

tor. The main result shows that time reversal is an effective tool for

imaging a reflector even in the absence of a coherent reflection. We

carry out the analysis in the regime of separation of scales, where the

probing pulse is large compared to the medium inhomogeneities but

small relative to the depth of the reflector. The limiting quantities

of interest are given as a solution to a system of transport equations,

which is solved by using Monte-Carlo simulations.

1 Introduction

Imaging of an object embedded into a random medium is a long standing,
important and complicated problem. Its relevance to various fields ranging
from seismic to radar and medical applications is hard to overemphasize. The
experiment is typically designed as follows. An acoustic pulse is sent into the
medium and the reflections generated by the inhomogeneities of the latter
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as well as by the object are recorded. The recorded signal is then analyzed
with the purpose of identifying a foreign inclusion whose acoustic properties
are clearly distinct from the those of the background.

A distinctive feature of all imaging methods proposed up to date has
been the availability of a direct reflection from the object of interest. (See [1]
for the case of imaging in clutter and [2] for the case of imaging in a finely
layered medium.) A coherent reflection is physically produced by a significant
contrast in the acoustic impedance between the object and its background.
While such a contrast alone does not guarantee a quality image, it helps
significantly to:

• solve the detection problem, i.e. establish the presence of an object;

• time the reflections and thus approximate the distance from the object
to the receiver.

The imaging method proposed in this paper relies on acoustic time rever-
sal. Time reversal of an acoustic wave has been observed, studied and used
in various contexts including imaging [3]. A time reversal mirror is a device
capable of recording a signal, reversing it in time and sending the resulting
signal back into the medium. A celebrated result of the time reversal exper-
iment is the refocusing of the scattered signal. Even more surprisingly, in
certain regimes, the shape of the refocused signal depends only on statistics
of the medium but not on its particular realization. By comparing the initial
pulse with its refocused version, one can then study the part of the medium
traveled by the pulse.

In this paper we consider a situation where an object embedded into a
one-dimensional random medium has the same or a similar impedance as
the rest of the medium. We show that while a traveling wave produces no
coherent reflection when meeting the object, we can detect its presence and
identify its location by relying solely on incoherent reflections.

We start by looking at the detection problem in a constant medium having
in mind to set up the context as well as introduce the relevant machinery
and work our way through to more interesting cases of a strong and weak
interfaces in a random environment.
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2 Reflector in a homogenous medium

In order to introduce notations, we briefly review in this section the math-
ematical setup of an acoustic pulse scattered by an interface between two
homogeneous media. We consider a one-dimensional medium characterized
by its density ρ and bulk modulus K, as follows:

ρ(z) =

{
ρ1, z ∈ [−L,−L1]
ρ2, z ∈ (−L1, 0]

, K(z) =

{
K1, z ∈ [−L,−L1]
K2, z ∈ (−L1, 0]

, (1)

where ρj, Kj, j = 1, 2 are positive constants (Figure 1).
An acoustic wave that propagates through this medium is then governed

by the equations: 



ρ(z)
∂u

∂t
+

∂p

∂z
= 0

K−1(z)
∂p

∂t
+

∂u

∂z
= 0,

(2)

supplemented by appropriate boundary conditions at z = 0 and z = −L
to be specified later. We look for a solution {p = p(t, z), u = u(t, z)}
that is continuous everywhere on [−L, 0] and continuously differentiable on
[−L, 0] \ {−L1}.

The medium acoustic impedance I and the wave speed of propagation c
are defined by

I(z) =
√

K(z)ρ(z), c(z) =

√
K(z)

ρ(z)
, (3)

and we denote Ij =
√

Kjρj, cj =
√

Kj/ρj, j = 1, 2.
The wave is decomposed into its left- and right-going components, A and

B respectively, defined by:
[

A
B

]
=

[
I−1/2 I1/2

−I−1/2 I1/2

] [
p
u

]
, (4)

−L 0

z
-

−L1

�
f(t)medium 2©medium 1©

Figure 1: A pulse is impinging onto a stack of two homogeneous slabs.
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so that 



∂A

∂z
+

1

c

∂A

∂t
= 0

∂B

∂z
− 1

c

∂B

∂t
= 0

, z 6= −L1. (5)

Assume that a pulse f(t) is sent into the medium at z = 0 and no energy
comes into the slab from the left, i.e. at z = −L. These assumptions result
in the following boundary conditions:

A(t,−L) = 0

B(t, 0) = f(t),
(6)

and the problem (2) is now well-posed. Observe that these boundary con-
ditions are equivalent to having an infinite medium on the left matching
medium 1© at −L and an infinite medium on the right matching medium 2©
at the surface, z = 0. In other words, the depth L does not play a particular
role in the problem. Our quantity of interest is the reflected wave A(t, 0).

At the interface z = −L1 we have

B(t,−L+
1 ) = f

(
t − L1

c2

)
(7)

and
A(t,−L−

1 ) = 0. (8)

The continuity of u and p at the interface z = −L1 gives, after a classical
computation, that

A(t,−L+
1 ) = R21 f

(
t − L1

c2

)
, (9)

where

R21 =
I2 − I1

I2 + I1
. (10)

Consequently, for z > −L1 we have

A(t, z) = R21 f

(
t − L1

c2
− z + L1

c2

)
. (11)

Therefore, our quantity of interest, the reflected wave at the surface z = 0 is
given by

A(t, 0) = R21 f

(
t − 2L1

c2

)
. (12)
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Thus if there is a contrast of impedances (I1 6= I2 =⇒ R21 6= 0), sending
a wave into a piecewise constant medium results in its part coming back
after twice the time it takes to reach the interface. In the case of matched
impedances (I1 = I2 =⇒ R21 = 0), the entire wave passes the interface (with
a change in velocity), and no reflection is generated. It is clear that the latter
situation makes detection of the interface impossible, since no information is
available at the surface (z = 0) for analysis.

With a random medium, reflections are generated not only by the in-
terface between the media, but also by the inhomogeneities of the medium.
The main goal of this paper is to show that incoherent reflections due to the
inhomogeneities in the medium provide us information that can be used to
detect the presence of an interface.

3 Reflectors in a random medium

As in the previous section, we will consider a medium with a piecewise con-
stant background, but this time the bulk modulus is randomly fluctuating
around its constant local background level (Figure 2). For simplicity of pre-
sentation, we will assume that the density remains piecewise constant without
any fluctuations:

ρ(z) = ρ̄(z), K−1(z) = K̄−1(z)
(
1 + ν

( z

ε2

))
, (13)

where the background density, ρ̄(z), and homogenized bulk modulus, K̄(z)
are as in the previous section:

ρ̄(z) =

{
ρ̄1, z ∈ [−L,−L1]
ρ̄2, z ∈ (−L1, 0]

, K̄−1(z) =

{
K̄−1

1 , z ∈ [−L,−L1]
K̄−1

2 , z ∈ (−L1, 0]
. (14)

The process ν is assumed to be centered, stationary, and having strong mixing
properties given later. In addition, we consider the regime of separation of

−L 0

z
-

−L1

�

f
(

t
ε

)
medium 2©medium 1©

Figure 2: A random medium with an interface inside is probed with a pulse.
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scales introduced in [4]. The correlation length of the inhomogeneties is
represented by ε2, where ε � 1. We further assume that a pulse f ε(t) ≡ f

(
t
ε

)

impinges on the medium at z = 0 which gives rise to an acoustic wave
propagating according to (2).

The parameter ε is dimensionless and serves to separate scales in the
problem. The correlation length ε2 (size of a typical inhomogeneity) of the
medium is much smaller than the typical wavelength ε of the pulse, which in
turn is much smaller than the distance of propagation L1 to the interface.

3.1 Propagator and the reflected wave

We first introduce the propagator in the case of a constant background
medium corresponding to ρ̄1 = ρ̄2 ≡ ρ̄ and K̄1 = K̄2 ≡ K̄. We decompose
the wave into left- and right-going parts and look at the frequency modes,
âε(ω, z) and b̂ε(ω, z), along the characteristics of the homogenized system.
These modes satisfy the following ordinary differential equation:

d

dz

[
âε

b̂ε

]
(ω, z) = Qε(ω, z)

[
âε

b̂ε

]
(ω, z), (15)

with

Qε(ω, z) =
iω

2εc̄
ν
( z

ε2

)[ −1 e
2iωϑ(z)

ε

−e−
2iωϑ(z)

ε 1

]
, (16)

where

c̄ =
√

K̄/ρ̄, ϑ(z) =
z

c̄
. (17)

With the boundary conditions

âε(ω,−L) = 0

b̂ε(ω, 0) = f̂(ω),
(18)

corresponding to a pulse coming from the right and a radiation condition on
the left, the problem is well-posed. Here f̂(ω) is the usual unscaled Fourier
transform of f(t).

In order to solve the two-point boundary value problem defined above,
it is convenient to turn it into an initial value problem by introducing a
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propagator [4], P ε(ω,−L, z). The propagator is a 2× 2 matrix, which is the
solution to the following initial value problem:





d

dz
P ε(ω,−L, z) = Qε(ω, z)P ε(ω,−L, z)

P ε(ω,−L,−L) = Id
(19)

so that

P ε(ω,−L, z)

[
âε(ω,−L)

b̂ε(ω,−L)

]
=

[
âε(ω, z)

b̂ε(ω, z)

]
. (20)

One can check that

P ε(ω,−L, z) =

[
α β̄
β ᾱ

]
, (21)

with |α|2 − |β|2 = 1, since the trace of the matrix Qε is zero.
The transmission coefficient T ε(ω,−L, z), and the reflection coefficient

Rε(ω,−L, z) for the slab [−L, z] (Figure 3)are defined by:

P ε(ω,−L, z)

[
0

T ε(ω,−L, z)

]
=

[
Rε(ω,−L, z)

1

]
, (22)

so that

T ε(ω,−L, z) =
1

α(ω,−L, z)
, Rε(ω,−L, z) =

β(ω,−L, z)

α(ω,−L, z)
. (23)

The reflection coefficient Rε ≡ Rε(ω,−L, z) satisfies the following Riccati
equation:





dRε

dz
= − iω

2c̄ε
ν
(
e−

2iωϑ(z)
ε − 2Rε + (Rε)2 e

2iωϑ(z)
ε

)

Rε(ω,−L,−L) = 0.
(24)

−L z
-

�

-

1

R(ω,−L, z)

�

-

T (ω,−L, z)

0

Figure 3: Transmission and reflection coefficients.
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The quantity of interest is the reflected wave A(t, 0), which admits the fol-
lowing representation:

A(t, 0) = =
1

2π

∫
âε(ω, 0)e−

iωt
ε dω

=
1

2π

∫
Rε(ω,−L, 0)f̂(ω)e−

iωt
ε dω.

(25)

3.2 Strong reflector

We show first that if there is a contrast of average impedances (Ī1 ≡
√

K̄1/ρ̄1 6=√
K̄2/ρ̄2 ≡ Ī2) then once the wave hits the interface, a coherent reflection is

generated. It will then propagate back to the surface and be recorded there
after twice the travel time to the interface.

The coefficients of the medium are given by (13) and (14). The propaga-
tor P ε(ω,−L, 0) can then be split into a product of three propagators that
correspond to medium 1, the interface, and medium 2. More precisely,

P ε(ω,−L, 0) = P ε
2 (ω,−L1, 0)Jε(ω,−L1)P

ε
1 (ω,−L,−L1), (26)

where

P ε
1 (ω,−L,−L1)

[
âε

1(ω,−L)

b̂ε
1(ω,−L)

]
=

[
âε

1(ω,−L−
1 )

b̂ε
1(ω,−L−

1 )

]
, (27)

Jε(ω,−L1)

[
âε

1(ω,−L−
1 )

b̂ε
1(ω,−L−

1 )

]
=

[
âε

2(ω,−L+
1 )

b̂ε
2(ω,−L+

1 )

]
(28)

and

P ε
2 (ω,−L1, 0)

[
âε

2(ω,−L+
1 )

b̂ε
2(ω,−L+

1 )

]
=

[
âε

2(ω, 0)

b̂ε
2(ω, 0)

]
. (29)

Here the interface propagator is given by

Jε(ω,−L1) =

[
r(+) −r(−) e

−2
iωL1
εc̄2

−r(−) e
2

iωL1
εc̄2 r(+)

]
, (30)

where

r(±) =
1

2



√

Ī1

Ī2

±
√

Ī2

Ī1


 , c̄j =

√
K̄j/ρ̄j, j = 1, 2. (31)
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Note that if Ī1 = Ī2, the interface propagator becomes diagonal. The propa-
gators P ε

1 and P ε
2 satisfy the following equations:





d

dz
P ε

1 (ω,−L, z) = Qε
1(ω, z)P ε

1 (ω,−L, z), z ∈ [−L,−L1]

P ε
1 (ω,−L,−L) = Id

(32)





d

dz
P ε

2 (ω,−L1, z) = Qε
2(ω, z)P ε

2 (ω,−L1, z), z ∈ [−L1, 0]

P ε
2 (ω,−L1,−L1) = Id

, (33)

where

Qε
j(ω, z) =

iω

2εc̄j

ν
( z

ε2

)[ −1 e
2iωϑ(z)

ε

−e−
2iωϑ(z)

ε 1

]
, (34)

and

ϑ(z) =

z∫

0

ds

c̄(s)
=





z + L1

c̄1

− L1

c̄2

, z ∈ [−L,−L1],

z

c̄2
, z ∈ [−L1, 0].

(35)

The propagators defined above admit the representations:

P ε
1 (ω,−L,−L1) =

[
α1 β̄1

β1 ᾱ1

]
, (36)

P ε
2 (ω,−L1, 0) =

[
α2 β̄2

β2 ᾱ2

]
, (37)

Jε(ω,−L1) =

[
αI β̄I

βI ᾱI

]
, (38)

with |αj|2 − |βj|2 = 1, j = 1, 2, I. It then follows from Equation (26) that
we can define the transmission, T ε(ω,−L, 0), and reflection, Rε(ω,−L, 0),
coefficients over the entire space −L ≤ z ≤ 0, which will satisfy the following
equation:

[
Rε(ω,−L, 0)

1

]
= P ε(ω,−L, 0)

[
0

T ε(ω,−L, 0)

]
, (39)

where

P ε(ω,−L, 0) =

[
α2 β̄2

β2 ᾱ2

][
αI β̄I

βI ᾱI

][
α1 β̄1

β1 ᾱ1

]
. (40)
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Solving for Rε(ω,−L, 0), we get

Rε(ω,−L, 0) =
α2αIβ1 + β2βIβ1 + α2βIα1 + β2αIα1

αIβ2β1 + α2βIβ1 + β2βIα1 + α2αIα1

. (41)

Introducing the notations

Tj = 1
ᾱj

,

Rj =
β̄j

ᾱj
,

R̃j = − βj

ᾱj
,

Dj ≡ T 2
j − RjR̃j =

αj

ᾱj
, j = 1, 2, I,

(42)

we obtain

Rε(ω,−L, 0) =
D2DIR1 − R1R2R̃I + D2RI + R2

1 −
(
R̃2DIR1 + R̃IR1 − R̃2RI

)

=
(
D2DIR1 − R1R2R̃I + D2RI + R2

)

×
∞∑

k=0

[
R̃2DIR1 + R̃IR1 − R̃2RI

]k

(43)

In order to study the reflected wave

A(t, 0) =
1

2π

∫
Rε(ω,−L, 0)f̂(ω)e−

iωt
ε dω (44)

we use the approach taken in [5]. The moments of A(t, 0) involve moments
of the form

E[Rε(ω1,−L1, 0) . . .Rε(ωn,−L1, 0)], (45)

for n distinct frequencies ω1, . . . , ωn. These moments involve sums of ex-
pectations of products of reflections and transmission coefficients. These
expectations can be factorized because the coefficients associated with the
medium 1 are asymptotically independent from the coefficients associated to
the medium 2. An application of Itô’s formula establishes that an expecta-
tion involving a product of reflection and transmission coefficients vanishes
as ε → 0 as soon as the product contains reflection coefficients. Only one
term of the expansion of Rε does not involve a reflection coefficient, and it is
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given by − r(−)

r(+) e
2iωL1

εc̄2 T 2
2 (ω,−L1, 0), coming from the D2RI term with k = 0

in the series. As a result the problem is reduced to the identification of the
limits of the moments

E
[
T 2

2 (ω1,−L1, 0) . . . T 2
2 (ωn,−L1, 0)

]
(46)

for n distinct frequencies (ωj)1≤j≤n. This study follows the same lines as the
one performed in [5]. We get that the phase compensated moments

E

[
e
−

2iω1L1
εc̄2 Rε(ω1,−L1, 0) . . . e

−
2iωnL1

εc̄2 Rε(ωn,−L1, 0)
]
, (47)

converge to limits given by.

(
−r(−)

r(+)

)n

E

[
T̃ (ω1)

2 . . . T̃ (ωn)2
]
, (48)

Here T̃ (ω) is a random variable given by

T̃ (ω) = exp

(
iω

√
γ

2c̄2

W (L1) − ω2 γ

8c̄ 2
2

L1

)
, (49)

where the coefficient γ is the positive integrated autocorrelation

γ =

∞∫

−∞

E[ν(0)ν(z)] dz, (50)

and W (z) is a standard Brownian motion. Substituting into the integral rep-
resentation (44) of the reflected wave, this shows that the following coherent
reflected pulse can be observed around the time t0 = 2L1/c̄2:

A(2L1/c̄2 + εs, 0)
ε→0−→ a(s) ≡

(
−r(−)

r(+)

)
1

2π

∫
e−iωsT̃ (ω)2f̂(ω)dω. (51)

At any other observation times t0 6= 2L1/c̄2 the reflected wave vanishes in the
limit ε → 0 because of the remaining rapid phase in the integral represen-
tation. In particular this implies that, even with random inhomogeneities in
the medium, the arrival time of the coherent reflection can be used to iden-
tify the depth of the jump in the background parameters with a precision of
order ε due to the random time shift.
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The limiting coherent reflected front can be written

a(s) = R21f ? ND2L1
(s − 2ΘL1), (52)

where Dz and Θz are defined as

D2
z =

γz

4c̄ 2
2

, Θz =
γ1/2

2c̄2

W (z), (53)

and ND is the centered Gaussian distribution with variance D2. The reflec-
tion coefficient

R21 = −r(−)

r(+)
=

Ī2 − Ī1

Ī2 + Ī1

,

corresponds to the one introduced in (10). It is the reflection coefficient cor-
responding to the case where the interface separates two homogeneous media
with the impedances Ī2 and Ī1. The reflected pulse front has a deterministic
shape imposed by the convolution with the Gaussian kernel ND2L1

, and it is
random only through the random time shift 2ΘL1. The result that we obtain
in the random case is not surprising once the behavior of a transmitted pulse
front is understood. Indeed the reflected front does a round trip in the ran-
dom medium to go from the surface z = 0 to the interface z = −L1 and come
back. The deterministic spreading thus corresponds to a travel distance of
2L1, and the random time shift is simply twice the one-way shift because the
wave travels in the same medium.

In the case of no contrast of average impedances (R21 = 0), this analysis
shows that there is no coherent front reflected to the surface z = 0. However,
we will show that the incoherent reflected wave due to scattering by the
inhomogeneities contains information about the change in the medium, in
this case, a jump in the average sound speed without a contrast of impedance.
In order to extract this information, we use a time reversal technique.

4 Time reversal in reflection for a constant

background

In this section we briefly present the time reversal analysis for one-dimensional
medium with constant background [6]. As before, we consider a pulse of the
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form f
(

t
ε

)
impinging upon a slab [−L, 0] at z = 0. As the wave propa-

gates through the random medium, it get scattered by inhomogeneities. The
reflected wave, A(t, 0), admits the representation:

A(t, 0) =
1

2π

∫
Rε(ω,−L, 0)f̂(ω)e−

iωt
ε dω, (54)

where Rε(ω,−L, 0) is the reflection coefficient over [−L, 0]. A piece of the
reflected wave is then recorded at the surface to yield

y(t) = A(t, 0) G(t), (55)

where G(t) is a cut-off function, e.g. G(t) = 1[0,t1](t). The recorded signal is
reversed in time to form a new pulse

fnew(t) = y(t1 − t) = A(t1 − t, 0) G(t1 − t), (56)

which is then sent back into the medium. Its propagation through the slab
gives rise to a new reflected wave at the surface, Anew(t, 0). We observe these
reflections around time tobs on the scale ε, i.e. we introduce the quantity

Sε(tobs + εσ) ≡ Anew(tobs + εσ, 0)

=
1

2πε

∫
e−iω1(σ+

tobs
ε )Rε(ω1,−L, 0)f̂ ε

new(ω1) dω1,
(57)

where

f̂ ε
new(ω1) =

1

2π

∫
Rε(ω2,−L, 0)f̂(ω2)Ĝ

(
ω1 − ω2

ε

)
e

iωt
ε dω2. (58)

A change of variables ω1 = ω + εh
2
, ω2 = ω − εh

2
yields

Sε(tobs + εσ) =
1

(2π)2

∫∫
e−iωσe

iω(t1−tobs)

ε e
ih(t1−tobs)−iεhσ

2 f̂

(
ω − εh

2

)

× Ĝ(h)Rε

(
ω − εh

2
,−L, 0

)
Rε

(
ω +

εh

2
,−L, 0

)
dh dω.

(59)

Note that if tobs 6= t1 the integral vanishes as ε → 0 because of the highly
oscillating exponent inside. If, on the other hand, tobs = t1, we observe a
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refocused pulse

Sε(t1 + εσ) =
1

(2π)2

∫∫
e−iωσ− iεhσ

2 f̂

(
ω − εh

2

)
Ĝ(h)

× Rε

(
ω − εh

2
,−L, 0

)
Rε

(
ω +

εh

2
,−L, 0

)
dh dω.

(60)

It follows from (60) that Sε(t1 + εσ) is characterized by the behavior of
the cross moments of Rε(ω,−L, 0) at close frequencies ω ± εh

2
.

4.1 Moments of the reflected coefficient

We follow the analysis of [4]. Define U ε
p,q(ω, h, z) = Rε

(
ω + εh

2

)p
Rε
(
ω + εh

2

)q
.

We are particularly interested in U ε
1,1(ω, h, z). Note, however, that U ε

1,1(ω, h, z)
does not satisfy a closed form differential equation. We therefore have to con-
sider the whole family

{
U ε

p,q

}
p,q

simultaneously.

We use the Riccati equation satisfied by Rε(ω,−L, z) to derive that





∂U ε
p,q

∂z
=

iω

c̄ε
ν(p − q)U ε

p,q +
iω

2c̄ε
νe

2iωz
c̄ε

(
qe−

ihz
c̄ U ε

p,q−1 − pe
ihz
c̄ U ε

p+1,q

)

+
iω

2c̄ε
e−

2iωz
ε

(
qe

ihz
c̄ U ε

p,q+1 − pe−
ihz
c̄ U ε

p−1,q

)

U ε
p,q(ω, h,−L) = 10(p)10(q).

(61)

We now remove the fast phase by introducing the following shifted Fourier
transform with respect to the variable h.

V ε
p,q(ω, τ, z) =

1

2π

∫
e−ih(τ− p+q

c̄
z)U ε(ω, h, z) dh. (62)

Then a direct computation reveals that
{
V ε

p,q(ω, τ, z)
}

satisfy





∂V ε
p,q

∂z
= − p + 1

c̄

∂V ε
p,q

∂τ
+

iω

c̄ε
ν(p − q)V ε

p,q

+
iω

2c̄ε
νe

2iωz
c̄ε (qV ε

p,q−1 − pV ε
p+1,q)

+
iω

2c̄ε
νe−

2iωz
c̄ε (qV ε

p,q+1 − pV ε
p−1,q)

V ε
p,q(ω, τ,−L) = δ0(τ)10(p)10(q).

(63)
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We now look at the limiting behavior of V ε
p,q(ω, τ, z) as ε → 0. The

assumptions on the stochastic process ν imply that the ratio ν(t/ε2)
ε

will be-
have like a white noise. A formal application of the diffusion approximation
theorem reveals that V ε

p,q → Vp,q as ε → 0, where Vp,q satisfies a stochastic
differential equation containing drift and diffusion terms. Taking the expec-
tation E [Vp,q] removes the diffusion part, while what remains reads:

∂E[Vp,q]

∂z
= − q + p

c̄

∂E[Vp,q]

∂τ
− 3γω2

4c̄ 2
(p − q)2

E[Vp,q]

+
γω2

4c̄ 2
pq
(
E[Vp+1,q+1] + E[Vp−1,q−1] − 2E[Vp,q]

)
,

(64)

where γ is as in the previous section. We now proceed with computing the
moments.

I. Consider a family of moments W̆p(ω, τ, z) = E[Vp+1,p(ω, τ, z)]. This
family satisfies a closed system of transport equations with the zero
initial condition:





∂W̆p

∂z
= − 2p + 1

c̄

W̆p

∂τ

+
γω2

4c̄ 2

[
p(p + 1)(W̆p+1 + W̆p−1 − 2W̆p) − 3W̆p

]

W̆p(ω, τ,−L) = 0.

(65)

As such, W̆p ≡ 0, ∀p. It means that E [Rε(ω,−L, 0)] → 0 as ε → 0,
and in particular that the first reflected wave is completely incoherent
(noise-like). This result can be generalized to show that all off-diagonal
moments, E[Vp,q], p 6= q, are zero.

II. Consider now a family of diagonal moments, Wp(ω, τ, z) = E [Vp,p(ω, τ, z)].
It also satisfies a closed system of transport equations:





∂Wp

∂z
+

2p

c̄

∂Wp

∂τ
= (LW )p

(LW )p =
γω2p2

4c̄ 2
(Wp+1 + Wp−1 − 2Wp)

Wp(ω, τ,−L) = δ0(τ)10(p)

(66)
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In particular the second moment of the reflection coefficient has the following
limit as ε → 0:

E

[
Rε

(
ω +

εh

2
,−L, 0

)
Rε

(
ω − εh

2
,−L, 0

)]

= E
[
U ε

1,1(ω, h, 0)
]

=

∫
E
[
V ε

1,1(ω, τ, 0)
]
eihτ dτ

ε→0→
∫

W1(ω, τ, 0) eihτ dτ.

(67)

4.2 Probabilistic representation of Wp

The solution to the infinite-dimensional system of transport equations may be
given a neat probabilistic interpretation. The latter gives rise to an efficient
numerical solution in general, and even an explicit formula in some particular
cases.

We begin by introducing a Markovian jump process (Nz)z≥−L constructed
as follows. The jump times are distributed exponentially with the intensity
p2γω2

2c̄ 2 , where p ∈ N
∗ is the current state of the process. In particular, p = 0

is an absorbing state. At a jump time, the process then changes its state to
p ± 1 with probability 1

2
.

Construct another process, (Tz)z≥−L, so that

Tz − T−L = −2

c̄

z∫

−L

Nζ dζ. (68)

The pair (Nz, Tz) is then a Markov process by itself. Its infinitesimal gener-
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ator is given by

LNf(p, τ) = lim
h→0

E [f (Nz+h, Tz+h) | (Nz, Tz) = (p, τ)] − f(p, τ)

h

= lim
h→0

1

h

[
f(p + 1, τ + O(h))

p2γω2

4c̄ 2
h

+f(p − 1, τ + O(h))
p2γω2

4c̄ 2
h

+f

(
p,−2

c̄
ph

)(
1 − p2γω2

2c̄ 2
h

)
+ o(h)

−f(p, τ)
]

=

(
L − 2p

c̄

∂

∂τ

)
f(p, τ)

(69)

The Feynman-Kac formula [7] then gives that the solution to (66) can be
written as

Wp(ω, τ, z) = E
[
WNz

(ω, Tz,−L) | (N−L, T−L) = (p, τ)
]

= E


δ0


τ − 2

c̄

z∫

−L

Nζdζ


10(Nz) | N−L = p


 .

(70)

Integrating with respect to τ and setting z = 0, we have:

τ1∫

τ0

Wp(ω, τ, 0)dτ = P


N0 = 0,

2

c̄

0∫

−L

Nζdζ ∈ [τ0, τ1] | N−L = p


 . (71)

A couple of observations are in order about Wp in light of its probabilistic
representation. By construction of (Nz), Wp(ω, τ, z) = 0 when τ < 0. Also
any realization of (Nz) that contributes to the right hand side of (71) satisfies
2
c̄

∫ 0

−L
Nζdζ < τ1. If τ1 < 2L

c̄
then it follows that

∫ 0

−L
Nζdζ < L, and hence Nz

has to be absorbed by 0 at some z0 < 0. It the follows that Wp(ω, τ, 0) does
not depend on L so long as τ < 2L

c̄
.

Recall that L was introduced as an artificial non-physical parameter in
order to help set up the problem mathematically. As τ is related in practice
to the time of recording, it remains finite. Thus for any practical τ , the
formula (71) holds true if L is chosen a priori large enough. We show now
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that by taking L → ∞ (half-space approximation), we may write an explicit
formula for Wp(ω, τ, 0). The formula remains true for a finite medium so long
as τ is appropriately bounded.

We first use the homogeneity of (Nz) to shift it in z, that is define

Ñz = Nz−L, z ∈ [0, L]. (72)

Upon continuing trajectories of (Ñz) to z > L we note that this process
is recurrent. In particular, it will reach the absorbing state 0 at a large
enough (although random) z, and hence the following random variable is
well-defined:

µp =
2

c̄

∞∫

0

Ñzdz. (73)

By taking L → ∞ we then obtain

τ1∫

τ0

Wp(ω, τ, 0)dτ = P


ÑL = 0,

2

c̄

L∫

0

Ñzdz ∈ [τ0, τ1] | Ñ0 = p




L→∞→ P

[
µp ∈ [τ0, τ1] | Ñ0 = p

]

= P




τ1∫

τ0

fµp(τ)dτ | N0 = p


 ,

(74)

where fµp(z) stands for the probability density function of µp. An application
of Feynman-Kac formula similar to the case of Wp reveals that the collection

of functions {fµp} satisfies (66) but with
∂fµp

∂z
= 0 since µp does not depend

on z: 



∂fµp

∂τ
=

γω2p

8c̄
(fµp+1 + fµp−1 − 2fµp)

fµp(ω, τ) = δ0(τ)10(p).
(75)

For the cumulative distribution functions of µp, Fµp(τ), we then have





∂Fµp

∂τ
=

γω2p

8c̄
(Fµp+1 + Fµp−1 − 2Fµp)

Fµp(ω, 0) = 10(p).
(76)
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By direct verification one obtains that the solution to (76) is given by

Fµp(τ) =

(
4γω2τ

8c̄ + γω2τ

)p

1[0,∞)(τ), (77)

and thus

fµp(τ) =
∂

∂τ

(
4γω2τ

8c̄ + γω2τ

)p

1[0,∞)(τ)

=





δ0(τ), p = 0

8pc̄ (γω2)
p
τ p−1

(8c̄ + γω2τ)p+1 1[0,∞)(τ), p 6= 0.

(78)

4.3 Characterization of the refocused pulse

It follows from (60) that

E [Sε(t1 + εσ)] =
1

(2π)2

∫∫
e−iωσe−

iεhσ
2 f̂

(
ω − εh

2

)
Ĝ(h)

× E

[
Rε

(
ω +

εh

2
,−L, 0

)
Rε

(
ω − εh

2
,−L, 0

)]
dh dω

(79)

By taking the limit as ε → 0, we obtain

E [Sε(t1 + εσ)]
ε→0→ 1

2π

∫∫
e−iωσf̂(ω)G(τ)W1(ω, τ, 0) dτ dω. (80)

This defines a deterministic shape, and one can show that the higher
moments of Sε converge to the respective powers of that shape. By combining
that together with the tightness of Sε in the space of continuous functions
endowed with the usual sup-norm, one obtains that

Sε(t1 + εσ)
P→ s(σ) =

1

2π

∫∫
Λ(ω, τ)f̂(ω)e−iωσG(τ)dω dτ, (81)

where Λ(ω, τ) ≡ W1(ω, τ, 0). We can equivalently write that

s(σ) =
(
f(−·) ? K(·)

)
(σ), (82)

where the Fourier transform of K satisfies:

K̂(ω) =

∫
G(τ)Λ(ω, τ) dτ. (83)

K is called the refocusing kernel and Λ is its density in the Fourier do-
main.
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5 Weak reflector

We consider now the case studied in Section 3, i.e. an interface between two
random media with constant background parameters but now with no con-
trast of impedance so that there is no reflected coherent front as explained
in the end of Section 3. We call such a reflector weak because a wave hit-
ting passes through with a change in velocity while generating no coherent
reflection. We therefore cannot rely upon a direct arrival for the purposes
of detection and location of such an interface. Instead we will show that the
incoherent data can be used for these purposes.

5.1 Reflection coefficient in a medium with a reflector

We assume the medium is given by (13), (14) with I1 = I2 and c1 6= c2. We
now consider the propagator, P ε(ω,−L, z), over [−L, z] and introduce the
corresponding transmission and reflection coefficients defined by

P ε(ω,−L, z)

[
0

T ε(ω,−L, z)

]
=

[
Rε(ω,−L, z)

1

]
. (84)

We consider the following cases:

I. If z ∈ [−L,−L1) then P ε(ω,−L, z) = P ε
1 (ω,−L, z) defined by equation

(32). Consequently, on [−L,−L1] the reflection coefficient Rε(ω,−L, z)
satisfies the Riccati equation:





dRε

dz
= − iω

2c̄1ε
ν
( z

ε2

) (
e−

2iωϑ(z)
ε − 2Rε + (Rε)2e

2iωϑ(z)
ε

)

Rε(ω,−L,−L) = 0.

(85)

II. If z ∈ [−L1, 0] then the propagator P ε(ω,−L, z) can be written as

P ε(ω,−L, z) = P ε
2 (ω,−L1, z)Jε(ω,−L1)P

ε
1 (−L,−L1), (86)

where P ε
2 (ω,−L1, z) satisfies equation (33), and J ε(ω,−L1) is simply

the identity matrix since r(+) = 1 and r(−) = 0. The reflection coeffi-
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cient can now be written as

Rε(ω,−L, z) =
α2β̄1 + β̄2ᾱ1

β2β̄1 + ᾱ2ᾱ1

=
Rε

2 +
(
(T ε

2 )2 − Rε
2R̃

ε
2

)
Rε

1

1 − R̃ε
2R

ε
1

= Rε
2 + (T ε

2 )2
∞∑

k=0

[
(Rε

1)
k+1
(
R̃ε

2

)k
]

.

(87)

Here

P ε
j =

[
αj β̄j

βj ᾱj

]
, Rε

j =
β̄j

ᾱj
, T ε

j =
1

ᾱj
, R̃ε

j = −βj

ᾱj
, j = 1, 2, (88)

and we have used the geometric series expansion as well as the identity
|αj|2 − |βj|2 = 1. The reflection coefficient Rε

2 ≡ Rε
2(ω,−L1, z) satisfies

the Riccati equation

dRε
2

dz
= − iω

2c̄2ε
ν
( z

ε2

)(
e−

2iωϑ(z)
ε − 2Rε

2 + (Rε
2)

2e
2iωϑ(z)

ε

)
. (89)

In addition, a straightforward computation yields

dT ε
2

dz
=

iω

2c̄2ε
ν
( z

ε2

)(
T ε

2 − T ε
2 Rε

2e
2iωϑ(z)

ε

)
,

dR̃ε
2

dz
= − iω

2c̄2ε
ν
( z

ε2

)
(T ε

2 )2 e
2iωϑ(z)

ε .

(90)

By differentiating (87) and using (89), (90) along with the identity

(
∞∑

k=0

ak+1bk

)2

=
∞∑

k=0

(k + 1)ak+2bk =
a2

(1 − ab)2
, (91)

we get that Rε(ω,−L, z) satisfies the Riccati equation on [−L1, z]:

dRε

dz
= − iω

2c̄2ε
ν
( z

ε2

)(
e−

2iωϑ(z)
ε − 2Rε + (Rε)2e

2iωϑ(z)
ε

)
. (92)
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By combining I and II, we obtain that Rε(ω,−L, z) satisfies the Riccati
equation on the entire domain [−L, 0]:

dRε

dz
= − iω

2c̄(z)ε
ν
( z

ε2

)(
e−

2iωϑ(z)
ε − 2Rε + (Rε)2e

2iωϑ(z)
ε

)
, (93)

where

c̄(z) =

{
c̄1, z ∈ [−L,−L1)
c̄2, z ∈ [−L1, 0]

, ϑ(z) =

z∫

0

ds

c̄(s)
. (94)

The analysis of time reversal follows closely the case of a constant back-
ground. Because all transformations introduced in Section 4.1 are local in
z, it follows that the same analysis will carry through. Time reversal exper-
iment therefore results in a pulse which converges to a deterministic shape
as ε → 0. That shape can be written in the integral form (81), where
Λ(ω, τ) ≡ W1(ω, τ, 0) can be obtained as a solution to the transport equa-
tions (66) with the background velocity c̄(z) given by (94).

5.2 Probabilistic representation

We know use the probabilistic representation of the solution to (66) to solve
the same equations but with a jump in the coefficient c̄. We first solve the
equations in the medium 1©. Since the solution for finite τ does not depend
on L so long as the latter is large enough, we may set L → ∞. Denoting the
solution by W

(1)
p , we obtain

W (1)
p (ω, τ,−L1) =





δ0(τ), p = 0

4pc̄1 (γω2)
p
τ p−1

(4c̄1 + γω2τ)p+1 1[0,∞)(τ), p 6= 0.
(95)

We next solve the transport equations in medium 2© with the background
velocity c̄2 and the initial condition W

(1)
p (ω, τ,−L1). The Feynman-Kac for-

mula yields:

Λ(ω, τ) = E


W

(1)

N
(2)
0


ω, τ − 2

c̄2

0∫

−L1

N (2)
s ds,−L1


 | N

(2)
−L1

= 1


 . (96)

Here N
(2)
z is a Markov process constructed as before with c̄ = c̄2.
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We would like to compare the solution to the transport equation with
a jump in the coefficient c̄, corresponding to a medium with a reflector to
the equations with a constant background velocity c̄2 that reflect an empty
medium. Towards that end, we write our solutions as

Λ(ω, τ) = Λ(2)(ω, τ)

+ E



(

W
(1)

N
(2)
0

− W
(2)

N
(2)
0

)
ω, τ − 2

c̄2

0∫

−L1

N (2)
s ds,−L1


 | N

(2)
−L1

= 1


 ,

(97)

where W
(2)
p (ω, τ,−L1) (and in particular Λ(2)(ω, τ)) is a solution to the con-

stant background problem with c̄2. Consider trajectories of N (2) that are
factored into the expectation in (97)

i. If a trajectory N
(2)
z is such that N

(2)
0 = 0, it does not contribute to the

expectation because W
(1)
0 − W

(2)
0 ≡ 0;

ii. If N
(2)
0 6= 0, it follows that

0∫
−L1

N
(2)
s ds ≥ L1. Since W

(i)

N
(2)
0

(ω, τ ′,−L1) =

0, ∀τ ′ < 0, i = 1, 2, the difference inside the expectation is non-zero only

when τ − 2
c̄2

0∫
−L1

N
(2)
s ds > 0, or equivalently τ > 2

c̄2

0∫
−L1

N
(2)
s ds ≥ 2L1

c̄2
.

More precisely,

ii.1 Trajectories N
(2)
z , such that N

(2)
z ≡ 1, ∀z ∈ [−L1, 0] will create a

jump in Λ(ω, τ) exactly at τ = 2L1

c̄2
(Figures 4,5);

ii.2 All other trajectories will manifest themselves in the expextation
for τ > 2L1

c̄2
.

We can use ii.1 to explicitly compute the size of the jump in Λ at τ = 2L1

c̄2
.

It is given by

E

[(
W

(1)
1 − W

(2)
1

)
(ω, 0,−L1) · 1n

N
(2)
z ≡1

o | N
(2)
−L1

= 1

]

=
γω2

4

(
1

c̄1
− 1

c̄2

)
e
−

γω2L1
c̄ 2
2

(98)
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Figure 4: Plot (a): Densities Λ(ω, τ) and Λ(2)(ω, τ). Plot (b): Ratio of the

densities Λ(ω,τ)

Λ(2)(ω,τ)
. Here we assume γω2 = 2, L1 = 1, c̄1 = 1.3, and c̄2 = 1,
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Figure 5: Plot (a): Densities Λ(ω, τ) and Λ(2)(ω, τ). Plot (b): Ratio of the

densities Λ(ω,τ)

Λ(2)(ω,τ)
. Here we assume γω2 = 2, L1 = 1, c̄1 = 1.7, and c̄2 = 2,
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We finally recall that the presence of a dissipative layer results in a jump
in the derivative of Λ [8]. A weak reflector introduced here creates a jump in
Λ directly. The latter is clearly easier to detect in practice when ε ≈ 0 but
still positive, as has been observed numerically in [9].

5.3 Expanding window time reversal experiment

Following [8], we consider a family of expanding cut-off window functions

{
Gτ (·) = 1[0,τ ](·)

}
τ≥0

, (99)

For the same initial pulse, this family corresponds to a continuous family of
time reversal experiments, which in turn gives rise to a collection of refocused
signals:

sτ (σ) = (f(−·) ? K(·)) (σ). (100)

The refocused signal sτ will contain no reflections from the embedded layer
if τ < 2L1

c̄2
. If, on the other hand, τ > 2L1

c̄2
, then the recorded coda contains

information about the reflector introduced through the refocusing kernel K.
Taking the Fourier transform of (100), we obtain

K̂(ω, τ) =
ŝτ (ω)

f̂(ω)
. (101)

Also, since

K̂(ω, τ) =

∫
Gτ (τ ′)Λ(ω, τ ′) dτ ′

=

∫ τ

t1

Λ(ω, τ ′) dτ ′,

(102)

we have
∂

∂τ
K̂(ω, τ) = Λ(ω, τ).

Thus by performing a sufficient number of time reversal experiments with an
increasingly large cut-off window, we are able to extract the density Λ(ω, τ)
to a satisfactory resolution.
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5.4 Summary of detection algorithm

The above discussion on detection of a weak reflector embedded into a ran-
dom medium characterized by the speed of sound propagation c̄2 can be
summarized in the form of the following algorithm.

1. We first perform a set of expanding window time reversal experiments
and record corresponding deterministic refocused pulses.

2. We use those pulses to retrieve the density Λ(ω, τ).

3. For a fixed ω = ω0, an observed jump in Λ(ω0, τ) at a time τ = τ ?

would indicate the presence of weak reflector at the depth given by
L1 = τ?c̄2

2
.

4. The speed of sound propagation inside the reflector, c̄1, can then be
retrieved from the formula (98).

We finally note here that a generalization to the case of multiple weak
reflectors is possible. The locations of jumps in the density Λ(ω0, τ) will cor-
respond to two way travel times of an acoustic wave to the physical locations
of the reflectors. The formulas for the corresponding speeds, however, are
not explicit.

6 Jump in medium statistics

We now consider the case of two media with the same background (macro-
scopic) parameters separated by an interface. The noises in the bulk modulus
in each medium are denoted as νj, j = 1, 2 and assumed to be independent,
centered, stationary and strongly mixing, so that the respective integrated
autocorrelations are well defined:

γj =

∞∫

−∞

E
[
νj(0)νj(s)

]
ds, j = 1, 2. (103)

The average impedance is constant, and a wave impinging on the interface
does not generate a coherent reflection. Proceeding as before, we derive that
the reflection coefficient Rε ≡ Rε(ω,−L, z) satisfies a Riccati equation:





dRε

dz
= − iω

2c̄ε
ν
(
z,

z

ε2

)(
e−

2iωz
c̄ε − 2Rε + (Rε)2e

2iω
c̄ε

)

Rε(ω,−L,−L) = 0,
(104)
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where the fluctuation process ν(·, ·) is defined as follows:

ν
(
z,

z

ε2

)
=





ν1

( z

ε2

)
, z ∈ [−L,−L1)

ν2

( z

ε2

)
, z ∈ [−L1, 0].

(105)

The analysis of the time reversal experiment follows the lines of the previous
sections. The refocused pulse converges to a deterministic shape as ε →
0, and the refocusing density Λ is obtained through a system of transport
equations similar to (66), where now the constant coefficient γ is replaced
with a piecewise constant function γ(z) given by

γ (z) =

{
γ1, z ∈ [−L,−L1)

γ2, z ∈ [−L1, 0].
(106)

We now continue by letting L → ∞, which enables us to obtain an explicit
formula for Λ(ω, τ) by solving the transport equations () in the medium 1©
with the constant noise autocorrelation γ1. Denoting the solution by W

(1)
p ,

we have

W (1)
p (ω, τ,−L1) =





δ0(τ), p = 0

8pγ1ω
2

c̄

(γ1ω
2τ/c̄)p−1

(8 + γ1ω2τ/c̄)p+1
1[0,∞)(τ), p 6= 0.

(107)

Next we solve the same system of transport equations in the medium 2© with
the autocorrelation constant γ2 and the initial condition W

(1)
p (ω, τ,−L1) ob-

tained above. The probabilistic interpretation derived in () for the resulting
solution yields:

Λ(ω, τ) ≡ W1 (ω, τ, 0)

= E


W

(1)

N
(2)
0


ω, τ − 2

c̄

0∫

−L1

N (2)
s ds,−L1


 | N

(2)
−L1

= 1


 .

(108)

N (2) is here a jump process with the state dependent intensity N2γ2ω2

2c̄ 2 and

jumps of size ±1 with equal probabilities. Denote as W
(2)
p (and consequently

Λ(2)) the solution to the transport equations corresponding to no interface,
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i.e. γ(z) ≡ γ2, z ∈ [−L, 0]. Then

Λ(ω, τ) = Λ(2)(ω, τ) +
(
Λ(ω, τ) − Λ(2)(ω, τ)

)

= Λ(2)(ω, τ) + E

[(
W

(1)

N
(2)
0

− W
(2)

N
(2)
0

) 
ω, τ − 2

c̄

0∫

−L1

N (2)
s ds,−L1




| N
(2)
−L1

= 1
]

(109)
Using the trajectory analysis presented previously, we deduce that

Λ(ω, τ) = Λ(2)(ω, τ), (110)

when τ < 2L1

c̄
, and that there is a jump in Λ(ω, τ) for any fixed frequency ω

at τ = 2L1

c̄
. The size of the jump is given by

E

[(
W

(1)
1 − W

(2)
1

)
(ω, 0,−L1)1n

N
(2)
z =1, z∈[−L1,0]

o | N
(2)
−L1

= 1

]

=
(
W

(1)
1 − W

(2)
1

)
(ω, 0,−L1) P

[
N (2)

z = 1, z ∈ [−L1, 0] | N
(2)
−L1

= 1
]

=
ω2

8c̄
(γ1 − γ2) e−

γ2ω2L1
2c̄2 .

(111)

That implies a sudden change in in the statistics of random fluctuations can
be detected and located precisely. Furthermore, if c̄ and γ2 are known, we
can characterize the statistics of the noise below the interface. We also note
that the above computations cover the case of a region with no noise, i.e.
γ1 = 0.

A comparison of the results of this section with those obtained previously
for the case of a jump in c̄ reveals that the defining quantity is the ratio γ/c̄.
If both characteristics, γ and c̄, change at the same depth −L1, then the weak
reflector mainfests itself in a jump in the density Λ(ω, τ) at τ ? = 2L1/c̄2. The
size of the jump is given by

ω2

8

(
γ1

c̄1
− γ2

c̄2

)
e
−

γ2ω2L1
2c̄ 2

2 , (112)

which implies that only the ratio γ1/c̄1 can be recovered from the surface.
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