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ABSTRACT

We propose a method of detecting a reflective layer in a lay-
ered random medium using the time reversal of an acous-
tic wave. Comparing the refocused signal with the original
probing pulse enables us to detect a change it the medium’s
acoustic properties. The depth of the reflector is pinpointed
even in the absence of a direct coherent reflection. We present
experimental results validating the proposed algorithm.

1. INTRODUCTION

In this paper, we consider the problem of detecting of a re-
flective obstacle in a random medium. Such a task often
arises in the context of searching for a land mine hidden in
the earth, or a foreign object in the human body. Throughout
this paper, we limit ourselves to thelayered case, where the
medium changes its properties only in one direction. The
reflector is then a layer inside the medium whose acoustic
properties are different from those of the background (Fig.
1). The stratifiedness of the medium is often a reasonable
assumption, at least locally.

We now “probe” the medium with an acoustic pulse and
listen toreflectionsgenerated by the medium. Our goal is
to use the latter to decide if there is an object inside the
medium, and further estimate the depth at which it is lo-
cated. As will be elaborated later on, we are interested in
the regime where a recorded signal contains no visible first
arrival of the wave reflected from the object. Direct analy-
sis of the reflected wave for our purposes therefore appears
problematic.

At the heart of our approach lies the general phenomenon
of time reversal. The essence of our experiment, referred
to astime reversal in reflection, can be summarized as fol-
lows. As a source emits a pulse, and the wave propagates
through the random medium, it generates reflections, which
are in turn recorded at the location of the source. A part of
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Fig. 1. The layered medium together with the embedded
reflector and the location of a source (bright point).

the recorded codais then resent into the medium in the re-
versed direction of time (last in - first out). As before, this
new wave gives rise to reflections that are again recorded
at the source. A striking result of the theory of time rever-
sal (see [1]) is thatin certain regimes, the signal recorded
the second time (as opposed to the previous recording) will
contain arefocused coherent partwhich is related to the
original pulse (Fig. 2). The refocused signal is also a func-
tion of the medium, the structure of which is of our primary
interest.

In the spirit of [3], we show that wisely choosing parts
of the coda to be resent enables us to aim at different depths
in the medium. By introducingrefocusing kernels, we then
compare the properties of those regions, and ultimately de-
sign a detection tool that not only helps determine the pres-
ence of an object but also ascertains its location.
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Fig. 2. Time reversal experiment.

2. PROBLEM SETUP

2.1. Wave equations and the source term

Consider a3D layered half-space with the acoustic proper-
tiesρ(x, y, z) = ρ(z) andK(x, y, z) = K(z) whereρ and
K are the mediumdensityandbulk modulusrespectively.
Assume further that a source located at the boundary of the
medium described above emits a wave into the medium. For
simplicity of discussion, we will consider a completely1D
case. All arguments below, however, can be generalized to
a 2D or full 3D layered medium (see [2]). The equations
for the wave propagation are written as

ρ∂u
∂t

+ ∂p

∂z
= δ(z) f

(
t
λ

)

1
K

∂p

∂t
+ ∂u

∂z
= 0,

(1)

whereu, p are the velocity and the pressure of the wave,
f is a fixed function (we may assume a finite support), and
λ � 1 is a small constant. The right-hand side of the first
equation corresponds to apoint sourcewith the wavelength
of the orderλ emitted atz = 0, which is at the boundary of
the medium.

2.2. Description of the medium

The acoustic characteristics of the medium,ρ andK, are
modeled as being fluctuating around their “average” values.
More specifically, we set

ρ(z) = ρ̄
(
1 + µ

(
z
l

))

K−1(z) = K̄−1
(
1 + ν

(
z
l

)) , z ≥ 0,

ρ(z) = ρ̄

K−1(z) = K̄−1
, z < 0.

(2)

Here,ρ̄ andK̄ are fixed positive constants,µ, ν are two
centered bound random processes, i.e.|µ|, |ν| < C < 1 and
l � 1. In addition to being centered, the random processes
µ andν should satisfy somemixing conditions. For the mo-
ment, we may assume that they are simply i.i.d. random
variables. A few remarks are in order regarding this setup.

• Thescale parameterl has a physical meaning of the
correlation length of the medium. We will assume
that l � λ. Small values ofl correspond to me-
dia whose acoustic properties vary on a fine scale, or
equivalently, media with very thin layers (much thin-
ner than the wavelength of the probing pulse).

• The density and the bulk modulus are chosen so that
their averages have the form

〈ρ〉 = ρ̄,

〈
1

K

〉
=

1

K̄
. (3)

One can use the homogenization theory (see [4]) to
show that ifl � λ then a wave propagating through
the medium (2) over a distance comparable toλ, “sees”
it as being constant with the acoustic parameters

(
ρ̄, K̄

)
.

The latter is called theeffective medium.

The average speed of wave propagation in the layered
medium (and the constant speed of propagation in the
effective medium) is defined bȳc =

√
K̄/ρ̄.

• Finally, the medium(z > 0) and the “free space”
(z < 0) are matched so that their effective parameters
are identical. This assumption is for simplicity only,
and is not crucial for the phenomena we are about to
describe.

3. TIME REVERSAL EXPERIMENT

Suppose now a wave of the formf
(

t
λ

)
starts atz = 0

and propagates into the medium. Each layer then gener-
ates small reflections that are recorded at the surface thus
producing{A(t) = p(z = 0, t)}t≥0. Part of this signal
recorded from timet1 till t2 can then be written asy(t) =
A(t)G(t), whereG(t) = I[t1,t2](t). One can show that
whenl, λ → 0, y(·) is completely incoherent (“noise-like”).

The time reversed signal is then defined asfTR(t) =
y(t2 − t). This signal is then sent back to the same medium



according to (1) and the new reflections,yTR(t) = p(z =
0, t), are once again recorded.

The theory of time reversal then states that asymptoti-
cally, whenλ, l → 0, λ ∼

√
l, the functionyTR(t) will have

a coherent part aroundt = t2 (and only there). Furthermore,
this coherent part is the convolution of the original sourcef
with some kernel, which is a function of the statistics of the
medium and the cutoff parameterst1, t2. More precisely,

s(σ) =
1

2π

∫∫
ΛTR(ω, τ)f̂(ω)e−iωσG(τ) dω dτ, (4)

or
s(σ) =

(
f(−·) ? Kt1,t2

TR (·)
)
(σ), (5)

wheres(σ) = yTR(t2 + λσ) and

̂Kt1,t2
TR (ω) =

∫
G(τ) ΛTR(ω, τ) dτ. (6)

We will refer toKt1,t2
TR as arefocusing kernel, andΛTR as

thekernel’s density in the Fourier domain. The equation (5)
means that the time reversal experiment leads to therefo-
cusingof the original signal att = t2 at the location of the
source. Our goal in the next section is to take the original
and the refocused signal to recover the refocusing kernel
and use the latter to study the medium.

4. DETECTION OF A REFLECTOR USING
REFOCUSING KERNELS

In this section, we show that time reversal can be used as
means to detect a reflective layer embedded into the medium.
We compute numerically approximations to refocusing ker-
nels for a medium with and without a reflector, and show
that not only do they contain information about its presence
or absence but in the former case also enable us to reliably
estimate its location.

4.1. Expanding window

Suppose we have two identical copies of the same medium.
We then embed a reflective layer at the depthL in one of
them, propagate the same pulsef according to (1) through
both, and record the reflectionsA1,2(t) at the locations of
the sources. The hyperbolicity of the equations (1) implies
that the two waves will propagate in exactly the same fash-
ion up until the timeT = 2L/c̄, which is the time it takes
a wave front to get deep to the reflector and bounce back to
the surface. We thus have

A1(t) = A2(t), 0 ≤ t ≤ T,
A1(t) 6= A2(t), t > T.

(7)

Computer simulations will invariably introduce numeri-
cal errors due to discretization. Experiments, however, clearly

show the exact time when the two codas start deviating. Un-
fortunately, in a practical setting we will only have accessto
one coda and not the other. Their direct comparison there-
fore will be impossible.

Consider a family of expanding cut-off window func-
tions {

Gt1,τ (·) = I[t1,τ ](·)
}

τ≥t1
,

wheret1 < T . For the same initial pulse, this family corre-
sponds to a continuous family of time reversal experiments,
which in turn gives rise to a collection of refocused signals:

sτ (σ) =
(
f(−·) ? Kt1,τ

TR (·)
)
(σ). (8)

It follows from (7) that the refocused signalsτ will contain
no reflections from the embedded layer ifτ ≤ T . If, on the
other hand,τ > T , then the recorded coda contains infor-
mation about the reflector introduced through the refocusing
kernelKt1,τ

TR .

4.2. Extracting refocusing kernels

Taking the Fourier transform of (8), we obtain

̂Kt1,τ
TR (ω) =

ŝτ (ω)

f̂(ω)
. (9)

Also, since

Kt1,τ
TR (ω) =

∫
G(τ ′)ΛTR(ω, τ ′) dτ ′

=
∫ τ

t1
ΛTR(ω, τ ′) dτ ′,

we have
∂

∂τ
Kt1,τ

TR (ω) = ΛTR(ω, τ).

An initial pulse and a refocused signal together enable one
to numerically estimate the corresponding refocusing ker-
nel and its density in the Fourier domain. In the next sec-
tion, we demonstrate experimentally that givenKt1,τ

TR (or
ΛTR(ω, τ)) alone, one can detect the presence of a reflec-
tive layer and reliably estimate its depth.

5. EXPERIMENTAL RESULTS

We illustrate the ideas described in the previous sections
with the following numerical experiment. A2D square of
the size2m × 2m is divided in halves (Fig. 1). The right
half contains a layered medium, and the left half is a “free
space”. The layered part consists 170 layers (each layer is
∼ 0.006m thick). The density of the medium is taken as
constant, i.e.ρ ≡ 1, and the bulk modulusK = 1

1+U
,

whereU is uniformly distributed on[−0.9, 0.9]. The ef-
fective speed of propagation is thereforec̄ = 1m/s. The
reflector of width∼ 0.1m is buried into the medium at the
depth∼ 0.5m and its bulk modulus is∼ 20Pa (Fig. 3).
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Fig. 3. Profiles ofK(z) without and with the embedded
reflector.

We use a pulse of the wavelengthλ ∼ 0.04m to pen-
etrate the medium with and without the reflector. The two
reflected codas are recorded. One observes (see Fig. 4) that
the two codas are incoherent and do not contain any first
arrival information. At the same time the two codas are dif-
ferent only whent > T = 1, whereT is the time it takes
for the pulse to reach the reflector and reflect back to the
surface.
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Fig. 4. Plots ofA1,2(t) and the differenceA1(t) − A2(t).

Finally, we perform several expanding window time re-
versal experiments with each medium and its corresponding
coda, record refocused signals, and extract the correspond-
ing refocusing kernels and their densities as described in the
previous section. The cross-sections of the resulting sur-
faces are presented in Fig. 5. We observe that the location
of the reflective layer is clearly marked by a change in the
slope of the refocusing kernel (or a jump of its density),
which is absent in the case where there is no embedded ob-
ject.
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Fig. 5. Plot of Kt1,τ (ω = 2) as a function of the window
parameterτ .

6. CONCLUSIONS

In this paper, we have presented an algorithm for detecting
a highly reflective layer in a random finely layered medium.
To do that we have relied on the phenomenon of time rever-
sal of an acoustic wave. We have shown that while the direct
reflections generated by a pulse going through the medium
contain no first arrival, time reversal allows one to obtain a
coherent pulse which is a convolution of the original source
with the medium dependent kernel.

Furthermore, by selecting how much of a coda we want
to back-propagate into the medium, we can control which
depth of the medium affects the kernel. A reflective layer
then translates into a sharp change in the derivative of the
kernel. The time of that change is directly related to the
depth of the reflector.
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