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Preface

Our motivation for writing this book is twofold: First, the theory of waves
propagating in randomly layered media has been studied extensively during
the last thirty years but the results are scattered in many different papers.
This theory is now in a mature state, especially in the very interesting regime
of separation of scales as introduced by G. Papanicolaou and his coauthors
and described in [8], which is a building block for this book. Second, we were
motivated by the time-reversal experiments of M. Fink and his group in Paris.
They were done with ultrasonic waves and have attracted considerable atten-
tion because of the surprising effects of enhanced spatial focusing and time
compression in random media. An exposition of this work and its applica-
tions is presented in [56]. Time reversal experiments were also carried out
with sonar arrays in shallow water by W. Kuperman [113] and his group in
San Diego. The enhanced spatial focusing and time compression of signals in
time reversal in random media have many diverse applications in detection
and in focused energy delivery on small targets as, for example, in the de-
struction of kidney stones. Enhanced spatial focusing is also useful in sonar
and wireless communications for reducing interference. Time reversal ideas
have played an important role in the development of new methods for array
imaging in random media as presented in [19]. A quantitative mathematical
analysis is crucial in the understanding of these phenomena and for the devel-
opment of new applications. In a series of recent papers by the authors and
their coauthors, starting with [40] in the one-dimensional case and [16] in the
multidimensional case, a complete analysis of time reversal in random media
has been proposed in the two extreme cases of strongly scattering layered
media, and weak fluctuations in the parabolic approximation regime. These
results are important in the understanding of the intermediate situations and
will contribute to future applications of time reversal.

Wave propagation in three-dimensional random media has been studied
mostly by perturbation techniques when the random inhomogeneities are
small. The main results are that the amplitude of the mean waves decreases
with distance traveled, because coherent wave energy is converted into incoher-
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ent fluctuations, while the mean energy propagates diffusively or by radiative
transport. These phenomena are analyzed extensively from a physical and
engineering point of view in the book of Ishimaru [90]. It was first noted by
Anderson [5] that for electronic waves in strongly disordered materials there
is wave localization. This means that wave energy does not propagate, be-
cause the random inhomogeneities trap it in finite regions. What is different
and special in one-dimensional random media is that wave localization always
occurs, even when the inhomogeneities are weak. This means that there is
never a diffusive or transport regime in one-dimensional random media. This
was first proved by Goldsheid, Molchanov, and Pastur in [79]. It is therefore
natural that the analysis of waves in one-dimensional or strongly anisotropic
layered media presented in this book should rely on methods and techniques
that are different from those used in general, multidimensional random media.

The content of this book is multidisciplinary and presents many new phys-
ically interesting results about waves propagating in randomly layered media
as well as applications in time reversal. It uses mathematical tools from prob-
ability and stochastic processes, partial differential equations, and asymptotic
analysis, combined with the physics of wave propagation and modeling of
time-reversal experiments. It addresses an interdisciplinary audience of stu-
dents and researchers interested in the intriguing phenomena related to waves
propagating in random media. We have tried to gradually bring together ideas
and tools from all these areas so that no special background is required. The
book can also be used as a textbook for advanced topics courses in which
random media and related homogenization, averaging, and diffusion approxi-
mation methods are involved. The analytical results discussed here are proved
in detail, but we have chosen to present them with a series of explanatory and
motivating steps instead of a “theorem-proof” format. Most of the results in
the book are illustrated with numerical simulations that are carefully cali-
brated to be in the regimes of the corresponding asymptotic analysis. At the
end of each chapter we give references and additional comments related to the
various results that are presented.
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1

Introduction and Overview of the Book

We begin by describing the organization of the book as shown in the diagram
in Figure 1.1.

The basic theory of wave propagation in one-dimensional random media
is contained in Chapters 2-9. Background for waves in deterministic, layered
media is given in Chapters 2 and 3. In Chapters 4 and 5 we introduce the
modeling of random media and describe in detail the scaling regimes that we
consider in this book. In Chapter 6 we give a self-contained presentation of
the asymptotic theory of random differential equations in a form that can be
applied directly to the analysis of waves in random media in the following
chapters. The asymptotic theory of reflection and transmission of waves in
one-dimensional random media is presented in Chapters 7-9. Monochromatic
reflection and transmission is analyzed in Chapter 7, which contains the well-
known results of exponential decay of transmitted energy as the size of the
random medium increases. In Chapter 8 we analyze the propagation of wave
fronts and in Chapter 9 we characterize the statistical properties of wave
fluctuations in the time domain.

The theory of time reversal in one-dimensional random media, both for
reflected and for transmitted waves, along with applications to detection and
communications, is presented in Chapters 10-13.

The extension of the theory of Chapters 8 and 9 to wave propagation
in three-dimensional randomly layered media is given in Chapter 14. Time
reversal in such media is analyzed in Chapter 15, where we derive analytical
formulas that characterize the enhanced spatial focusing. An application to
echo-mode energy refocusing on a passive scatterer is presented in Chapter
16.

Chapters 17-19 contain special topics and various generalizations to other
asymptotic regimes and other types of waves. In Chapter 20 we analyze in
detail wave propagation in randomly perturbed waveguides. This chapter is
self-contained and could be read right after Chapter 6.

We now describe in more detail the contents of the chapters.
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Waves in layered media
Chapters 2—3

|

Random media | Motivation Limit theorems
and scalings |~~~ —~ - for random
Chapters 4—5 differential equations
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in one-dimensional waveguides
random media Chapter 20
Chapters 7—9

Time reversal Three-dimensional
in one-dimensional randomly layered One-dimensional
random media media random
Chapters 10—-13 Chapter 14 Schrodinger
Chapter 19

Time reversal

in three-dimensional Other regimes Other layered
randomly layered >| of propagation media
media Chapter 18 Chapter 17

Chapters 15—16

Fig. 1.1. Interdependence of the chapters.

Basic facts about wave propagation in homogeneous media are pre-
sented in Chapter 2.

In Chapter 3 we consider one-dimensional piecewise constant layered
media, and we introduce the usual formulation of reflection and transmission
in terms of products of matrices.

Starting with Chapter 4 we consider randomly layered media. We
introduce the linear system of acoustic equations for waves propagating in
one dimension, and then carefully describe the sequence of transformations
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that will be carried out throughout the rest of the book. We pay particular
attention to boundary conditions and their interpretation, and to the reflected
and transmitted waves in both the frequency and time domains. The concepts
of random media and correlation lengths are introduced in this chapter. Our
point of view is that randomness is closely associated with small-scale inhomo-
geneities leading naturally to the regime of homogenization and the notion of
effective medium. This is done with an application of the law of large numbers,
in the context of differential equations with random coefficients. This regime
corresponds to waves propagating over distances of a few wavelengths, which
are, however, much larger than the correlation length of the inhomogeneities.

We go a step further in Chapter 5 by considering waves propagating over
distances much larger than wavelengths. The fluctuations due to the multi-
ple scattering by the random inhomogeneities accumulate and create “noisy”
reflected and transmitted waves. We introduce important scaling regimes in
which diffusion approximations are valid, leading to differential equations
with random coefficients that are white noise. Even though the equations are
linear, the probability distribution of the “noisy” wave field is a highly non-
linear function of the distribution of the random coefficients that model the
random inhomogeneities. For a given frequency the random differential equa-
tions that enter are finite-dimensional, but in the time domain the problems
become infinite-dimensional. Asymptotic approximations greatly simplify the
analysis in the scaling regimes, and enable us to obtain useful information
about the statistics of the reflected and transmitted waves.

In Chapter 6 we present concepts and results about stochastic pro-
cesses needed in the modeling of one-dimensional wave propagation and its
asymptotic analysis. It is important to note that distance along the one-
dimensional direction of propagation plays the role of the usual time param-
eter for these stochastic processes. The physical time is transformed by going
into the frequency domain. In this chapter we present briefly the elements of
the theory of Markov processes used for modeling randomly layered media
and for describing the limit processes arising in the regime of diffusion ap-
proximations. A summary of the stochastic calculus is given at the end of
the chapter, including It6’s formula, stochastic differential equations, the link
with parabolic partial differential equations through the Feynman—Kac for-
mula, and applications to the study of Lyapunov exponents of linear random
differential equations.

A detailed analysis of the reflection and transmission of monochromatic
waves in a one-dimensional random medium is given in Chapter 7. In one-
dimensional random media all the wave energy is eventually converted into
fluctuations, giving rise to the phenomenon of wave localization. This means
that the energy is trapped by the random medium. It is entirely reflected back
in the case of a random half-space. We show that the exponential decay of
the transmitted energy through a random slab of random medium is closely
related to the stability of the random harmonic oscillator, studied in this
chapter. We also compute the moments of the transmitted energy, quantifying
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the exponential decay, as well as the almost-sure exponential decay that is
related to the usual localization theory.

In Chapter 8 we study the transmitted wave front in one-dimensional
random media, in the regimes of the diffusion approximation introduced in
the previous chapters. A pulse is sent from one end of a one-dimensional ran-
dom medium and it is observed at the other end (see Figure 1.2). When the
pulse exits the slab it looks like a smeared and faded version of the original
one, followed by a noisy, incoherent coda. It is quite remarkable that in these
asymptotic regimes, the front of the transmitted pulse has a simple descrip-
tion: (i) its deterministic shape is given by the convolution of the original pulse
with a deterministic kernel that depends only on the second-order statistics
of the random medium, and (ii) the transmitted wave front is centered at a
random arrival time whose probability distribution is explicitly given in terms
of a single Brownian motion. In this chapter we also describe the wave front
reflected from a strong interface in a random medium.

Reflected Signal Transmitted Signal

an iu

i I
80 120 160

I I
160 -120 -80 -40

N O
N
o

Fig. 1.2. Propagation of a pulse through a slab of random medium (0, L). A right-
going wave is incoming from the left. Snapshots of the wave profile (here the pressure)
at different times are plotted from bottom to top. The reflected and transmitted
signals at the last time of the numerical simulation are plotted at the top.
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In Chapter 9 we characterize the statistics of the reflected and trans-
mitted waves, including the coda, in both the frequency and time domains
(see the wave signals plotted at the top of Figure 1.2). This is done by a
careful asymptotic analysis of the moments of the reflection and transmission
coefficients. They satisfy a system of differential equations with random coef-
ficients and are scaled so that the diffusion approximation can be applied. The
limiting moments are obtained as solutions of systems of transport equations,
which play a central role in the analysis of time reversal with incoherent waves,
discussed in the following chapters. The solutions of these deterministic trans-
port equations admit a probabilistic representation in terms of jump Markov
processes, which is particularly convenient for Monte Carlo simulations and,
in some cases, for deriving explicit formulas.

In Chapter 10 we analyze time reversal in reflection where the in-
coherent reflected waves are recorded and sent time-reversed back into the
medium. We show that stable refocusing takes place at the original source
point. This is observed in physical experiments and illustrated in numerical
simulations in Figures 1.3 and 1.4. Time-reversal refocusing can be used to
estimate power spectral densities of reflected waves. They contain information
about the medium. In this chapter we also compare, with a detailed analy-
sis of signal-to-noise ratios, the spectral estimation method using time
reversal with a direct estimation of cross-correlations of the reflected signal.

In Chapter 11 we present two applications of time reversal to detection.
In the first application, we use time reversal to detect the presence of a weak
reflector buried in the many random layers. In this case the refocusing ker-
nel of the time-reversal process has a jump that is related to the depth and
strength of the reflector, and we exploit this to identify the reflector. In the
second application, we introduce absorption in the one-dimensional model
and show that refocusing still takes place after time reversal. We apply this to
the detection and characterization of a dissipative region embedded in the
random medium. In the presence of a dissipative region the refocusing kernel
is modified and has a jump in its derivative. The time of this jump is related
to the depth of the dissipative region, and its amplitude to the strength of
absorption.

In Chapter 12 we study time reversal of waves in randomly layered media
described in the previous chapters. In this chapter we analyze time reversal
in transmission, which means that a pulse is emitted at one end of a random
slab, recorded at a time-reversal mirror at the other end, and then sent back.
The wave refocuses at the original source point and the quality of the refo-
cusing depends on how much of the transmitted wave has been recorded. In
particular, it is shown that recording some part of the incoherent coda wave
improves refocusing.

Applications to communications are presented in Chapter 13, where we
analyze signal-to-interference ratios with and without using time reversal
for communications through a one-dimensional random channel.
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Fig. 1.3. We use the same random medium as in Figure 1.2 and send back, to the
right, the time-reversed reflected signal (the one plotted at the top left corner of
Figure 1.2). Snapshots of the wave profile (here the pressure) at different times are
plotted from bottom to top. The refocused pulse is seen emerging from the random
medium at the top.

Starting with Chapter 14 we analyze waves propagating in a randomly
layered three-dimensional medium. By taking Fourier transforms with re-
spect to time and along the layers, the problem can be formulated as infinitely
many one-dimensional problems. We model a physical source located at the
surface of the random medium. Using a stationary phase analysis, we show
that in the regime of diffusion approximations, and because of the separation
of scales as in previous chapters, the stable wave front can again be described
with an explicit formula that we derive.

Time reversal of waves propagating in three-dimensional randomly layered
media is discussed in Chapter 15, where we consider a time-reversal mirror
that records the signals generated by a source embedded in the random lay-
ers. We show that the time-reversed waves refocus around the original source
point. We give a detailed analytical description of the refocused pulse in time
and space. We compare this refocusing with diffraction-limited refocusing
in homogeneous media and show that there is superresolution from multi-
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signal

-10 0 10

Fig. 1.4. We plot the refocused pulses generated by 10 independent simulations of
time reversal (we follow the same procedure as in Figures 1.2-1.3, and we magnify
the refocused pulse seen at the top line of Figure 1.3). The initial pulse is the
second derivative of a Gaussian. We see here the remarkable statistical stability of
the refocused pulse. Its shape and center do not depend on the realization of the
medium, in contrast to the small-amplitude random wave fluctuations before and
after the refocusing time.

pathing. This means that the focusing is much tighter, as well as stable, in
the random medium.

In Chapter 16 we present an application of time reversal in three-
dimensional randomly layered media to echo-mode energy refocusing on
a passive scatterer. This means that when the reflected signals received at
the time-reversal mirror from a scatterer in a randomly layered medium are
time-reversed and suitably reemitted, they tend to focus on the scatterer.

In Chapter 17 we present an extension of the theory of wave propagation
and time reversal to more general randomly layered media. We analyze
models in which the effective parameters of the random medium do not match
those of the adjacent homogeneous medium. We also analyze the case in which
the effective parameters of the random medium vary smoothly at the macro-
scopic scale. The case in which both the bulk modulus and the density of the
medium are randomly fluctuating is analyzed in Section 17.3.

Chapter 18 is devoted to several extensions and generalizations including
the following ones.

- We reconsider the analysis for a different regime of scale separation, in
which the amplitude of the fluctuations of the medium parameters is small
and the typical wavelength is comparable to the small correlation length
of the random medium.

- We extend the analysis to dispersive or weakly nonlinear random
media. In the dispersive case, time reversal succeeds in recompressing the
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dispersive oscillatory tail as well as the incoherent part of the waves. We
analyze the combined effect of randomness and weak nonlinearity on the
front of a propagating pulse. We show that randomness helps in preventing
shock formation, so that time reversal in transmission can be done for
longer propagation distances.

- We study the effect of changes in the medium parameters before and
after time reversal. Although refocusing is affected by these changes, we
still have partial refocusing. We also quantify the partial loss of statistical
stability.

In Chapter 19 we discuss the robustness of wave localization in a ran-
domly layered medium when there is also nonlinearity, in the context of the
nonlinear Schrédinger (NLS) equation. Using a perturbed inverse scattering
transform, we show in this chapter that a soliton can overcome the exponen-
tial decay experienced by linear waves propagating through a slab in random
medium.

Wave propagation in waveguides is analyzed in Chapter 20. We consider
the case in which the waveguide supports a finite number of propagating
modes and the random fluctuations of the medium are three-dimensional. We
analyze only transmitted waves through a randomly perturbed waveguide,
in the forward-scattering approximation, and the space-time refocusing of
these waves after time reversal. We show that stable refocusing does occur,
especially when the number of modes is large. This chapter may be considered
as a link with the theory of wave propagation in three-dimensional random
media.
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